
Emulation-based Evaluation of an Architecture for
Wide-Area Service Composition

Bhaskaran Raman Randy H. Katz

475 Soda Hall, EECS Department, U.C.Berkeley
Berkeley, CA 94720-1776, U.S.A.�
bhaskar,randy � @cs.berkeley.edu

Abstract

Service composition provides a flexible way to quickly enable
new application functionalities using component services. We fo-
cus on the scenario where next generation portal providers “com-
pose” the services of other providers. We have developed an archi-
tecture based on an overlay network of service clusters to provide
failure-resilient composition of services across the wide-area In-
ternet: our algorithms detect and recover quickly from failures in
composed client sessions.

In this paper, we present an evaluation of our architecture
whose overarching goal is quick recovery of client sessions. The
evaluation of an Internet-scale system like ours is challenging.
Simulations do not capture true workload conditions and Internet-
wide deployments are often infeasible. We have developed an em-
ulation platform for our evaluation – one that allows a realistic
and controlled design study. Our experiments show the effective-
ness of our recovery mechanisms: over 90% of the client sessions
are restored within 1sec after failure detection in Internet paths.
We collect trace data to show that failure detection itself can be
tight on wide-area Internet paths – within about 2sec. Failure de-
tection and recovery within these time bounds represents a signifi-
cant improvement over existing Internet path recovery mechanisms
that take several tens of seconds to a few minutes [12]. Further-
more, the control overhead involved in implementing our recovery
mechanism is minimal in terms of network as well as processor
resources; minimal additional provisioning is required for this.

Keywords: Network emulation, Service composition, Overlay
networks, Failure detection, Session recovery

1 Introduction

Value added services and content provisioning will be the driv-
ing force behind the development and deployment of future com-
munication networks. It is important to enable quick and flexible
development of end application functionality. Composition of ser-
vices from independent components offers a flexible way to enable
new application functionalities. Consider for instance a user with a
new wireless thin client roaming to a foreign network. She wishes
to access a local news/weather video service. A portal provider
enables this by composing the video service with an appropriate

transcoder to adapt the contents of the video to the thin client’s ca-
pabilities (Fig. 1). Further, she wishes to access her email from her
home provider on her cell-phone while she is on the move. The
portal provider enables this by composing a third-party text-to-
speech conversion engine, with the user’s email repository. Com-
position of complex services from primitive components enables
quick development of new application functionality through the
reuse of the components for multiple compositions.

In a composed service, a set of component services are strung
together – we call this a service-level path.

Composition by itself is not a novel idea. However, there are
critical challenges to be addressed in the context of composing in-
dependent components across multiple service providers. In our
example, the transcoding service and the news/weather video ser-
vice could belong to different providers. Providers deploy and
manage multiple instances of their services at different points in
the network for load balancing and availability reasons. The per-
formance of the composed service is critically dependent on the
choice of instances for composition. This is more challenging than
traditional web-server selection since we have to choose a set of
service instances, with adequate network performance along the
entire path. These choices have to be dynamic, and on a per-client
basis, taking into account the client’s position in the network.

A second challenge is that of availability. Since services are
deployed by multiple providers, a service-level path could span
multiple network domains (Fig. 1). This has implications on the
availability of the composed service. Recent research has shown
that inter-domain Internet path availability is very poor [13], and
that Internet route recovery can take of the order of a few min-
utes [12]. Since multimedia sessions could last for several minutes
to hours, it is important to address network failures during a ses-
sion. Such recovery has to be quick for real-time applications. We
wish to take advantage of the multiple replicas of the service in-
stances and dynamically choose alternate service instances when
the original service-level path experiences an outage1 (see the dot-
ted lines in Fig. 1).

Quick restoration of service-level paths is challenging since
there are scaling implications when a large number of client ses-
sions have to be restored on a failure. Another challenge is that

1We assume that services have only soft-state, and no persistent state.
Soft-state can be built up at an alternate server without affecting the cor-
rectness of the session. Our examples fall under this category. Also see [1].



Text
to

Speech

Text
to

Speech

Alternate path
Service-level path

Service Provider B

Service provider Q

Service provider R

Service Provider A User
Portal Provider

Thin client GSM cellular-phone

Email-repository

Transcoder

Video-on-demand
server

Replicated
Instances

Domain
Internet

Service Provider B

Service Provider A

Figure 1. Service composition across the wide-area Internet

of failure detection over the wide-area Internet. There is inherent
variability in delay, loss-rates, and outage durations. A conserva-
tive timeout mechanism to detect failures could mean longer de-
tection times in general, while a more aggressive mechanism may
trigger spurious path restorations.

We have developed an architecture for addressing the issues of
performance and availability in service-level paths. In this paper,
we present an evaluation of our design. We specifically look at
the issue of quick failure detection and recovery for availability
of the service-level path. A challenge that relates to evaluation
of mechanisms for path recovery is the following. Simulations
are not ideal for capturing true processor/network overheads, es-
pecially under scale. However, creating and maintaining a realistic
research testbed across the wide-area Internet would be too cum-
bersome and expensive. Also, with a real deployment, a controlled
design study would be difficult due to non-repeatability of experi-
mental conditions.

In this paper, we present an evaluation of our path-recovery
algorithms using an emulation platform that we have developed.
The platform allows us to realistically implement our algorithms,
while emulating wide-area Internet latency and loss. The differ-
ent instances of our distributed recovery algorithm run on multiple
machines of a cluster within our testbed. Unlike a simulation, the
emulation can run in real-time, handling the control traffic of thou-
sands of client sessions; and unlike a real deployment, the testbed
itself, and the experimental conditions are under our control.

Our experiments show that the control overhead involved in up-
dating the distributed path state to effect restoration is manageable,
both in terms of network resources as well as processor resources.
This allows the system to scale well with an increasing number
of simultaneous client sessions. In our implementation, a single
machine (Pentium-III 500MHz) can easily handle the distributed
path state associated with about 400-500 simultaneous client ses-
sions. (Beyond this, we run into bottlenecks in our emulation
setup). This amounts to little additional provisioning, especially
when dealing with heavy-weight service components such as the
video transcoder or the text-to-speech engine in our example.

To analyze how quickly failure detection can be done, we col-
lect trace-data on Internet path outages across geographically dis-
tributed hosts. Our analysis shows that failure detection itself, over
the wide-area can be done quite aggressively, within about 2sec.
We use the traces to model losses and outages on Internet paths
and use this to drive our emulation. We find that even with an ag-
gressive failure detection timeout of 1.8sec, spurious path restora-

tions happen infrequently – about once an hour. Since the control
overhead is small, such spurious restorations are a small price to
pay for quick failure detection.

Further, under our trace-based modeling of Internet outages,
we find that recovery of paths after failure detection can be done
within 1sec for over 90% of the client sessions. Such a combina-
tion of quick detection and recovery, within a few small number
of seconds, would be immensely useful for the kinds of real-time
applications described above.

The next section presents an overview of our architecture. Sec-
tion 3 describes the emulation testbed. Our evaluation of path re-
covery mechanisms is in Section 4. We discuss related work in
Section 5 and conclude in Section 6.

2 Design Overview

In this section, we present a brief walk-through of our architec-
ture, highlighting the main design points to establish the context
for the performance evaluation. The goal of our architecture is to
enable performance sensitive service-level path creation, and path
recovery upon failure detection. The idea behind path recovery is
to use an alternate Internet path, much as in [4, 5]. The motiva-
tion for this is that network-level failures can happen quite often –
studies show that inter-domain Internet paths can have availability
as low as 95% [13]. And when such failures do happen, they can
last for several minutes [12].

The choice of service instances for service-level path cre-
ation/recovery is somewhat like web-mirror selection, but is more
complicated, since in general, we may need to select a set of in-
stances for a client session. Further, unlike traditional web-server
selection mechanisms, client sessions in our scenario could last
for a long time, and it is desirable to provide mechanisms for path
recovery using alternate service instances during a session.

A hop-by-hop approach where each leg of the path is con-
structed independently could result in sub-optimal paths – a good
choice of the first leg of the path could mean a poor choice for the
second leg.

Motivated by the notion of a service-level path, we think in
terms of a service-level overlay network. Our architecture for op-
timal and robust service composition is depicted in Fig. 2. We have
three planes of operation: at the lowest layer is the hardware plat-
form consisting of compute clusters deployed at multiple points on
the Internet. This constitutes the middle-ware platform on which
service providers deploy services. Providers could deploy their



own service clusters, or could use third party providers’ clusters.
We define a logical overlay network on top of this, by means of
peering relationships between pairs of clusters. This supports the
composition of services across the clusters, as well as monitoring
the network path in-between, for liveness as well as for perfor-
mance metrics such as latency, bandwidth, etc. At the top level,
we have composed services – service-level paths are formed as
paths in the overlay graph. An example service-level path from a
source to a destination, through services S1 and S2 is shown in the
figure. Note that we also allow for “no-op” services in-between
that simply provide connectivity, and do not add any application
functionality.

SourceInternet
A

B
Destination

no−op

no−op

no−op

Peering

Service clusterS1

S1’

S2’

S2

Hardware
platform

Logical
platform

Application
plane

Service
Clusters

Overlay network
Peering relations,

Composed
services

Figure 2. Architecture

The overlay network provides the context for exchange of
performance information to create “optimal” service-level paths.
Also, redundancy in the overlay network allows us to define alter-
nate service-level paths for recovering from failures – the dotted
lines between A and B in Fig. 2. The use of clusters amortizes the
monitoring overhead across all client path sessions going through
both peering service clusters. In each cluster, a cluster manager
(CM) is responsible for implementing our algorithms for service-
level path creation and recovery. The software architecture at the
CM, as well as other requisite functionalities, are shown in Fig. 3.

Path
Creation

Path
Recovery

Liveness
Detection

Performance
Measurement

Reliable
UDP

Peer−Peer
Measurements

Link−State Propagation

Fi
nd

in
g 

O
ve

rl
ay

 E
nt

ry
/E

xi
t

L
oc

at
io

n 
of

 S
er

vi
ce

 R
ep

lic
as

Service−Composition

Link−State

Functionality at the Cluster Manager

Figure 3. Software Architecture

A service-level path enters and exits our overlay network at en-
try/exit points (points A and B in Fig. 2). For a particular end-point
outside the overlay network, the choice of the closest overlay node
could be made using pre-configuration, or some simple selection
mechanism. The first vertical layer in Fig. 3 captures this function-
ality. The next functionality we separate is that of service-location.
This is the second vertical layer in Fig. 3. Here, we just need a list
of locations of service replicas – something like the list of mir-
rors for a web-site. This can either be distributed slowly across the
overlay nodes, or can be retrieved from a central (replicated) direc-
tory. The rest of the functionality in the figure resides in the CM
of each overlay-node (service-cluster). The CM implements the
mechanisms for inter-cluster, wide-area distributed service-level
path creation and recovery. This is what we evaluate in this paper.

Functionalities at the Cluster Manager (CM)
The functionality at the manager node is in three layers

(Fig. 3). The lowest layer implements communication between
peer service-clusters in the overlay network, including perfor-
mance measurement and liveness tracking. We have implemented
liveness tracking as a simple periodic two-way heart-beat ex-
change, with a timeout to signal failure2. We have implemented
latency as a performance measure – our architecture also allows
measurement and exchange of other metrics such as cluster load,
bandwidth, or other generic metrics.

At the next layer, global information about link performance
and liveness is built using a link-state algorithm in the overlay net-
work. We choose a link-state approach since we require global in-
formation for constrained path selection, the constraint being that
the path should have a set of services on it, in a particular order.

The top layer implements the functionalities for service com-
position itself: initial creation, and recovery when overlay network
failures are detected. We describe these algorithms along with our
evaluations in Sec. 4. We note that service-level paths have an
explicit session setup phase, and there is connection-state at the
intermediate nodes. (For instance, for a transcoder service, this
switching state includes the input data type and source stream,
and the output data type and next-hop destination information).
This means that, unlike Internet routing, failure information need
not propagate to the entire network for corrective measures to be
taken. We could have end-to-end path restorations or perform on-
demand local-link recovery as in MPLS [8].

The messaging at the link-state and service-composition lay-
ers are implemented on top of a UDP-based messaging layer that
provides at-least-once semantics using re-transmits.
Potential bottlenecks and sources of overhead

Each of the three layers presented above has overheads. Our
main goal is to quantify these, identify sources of bottlenecks,
and determine how quickly we can effect service-level path re-
covery. At the service-composition layer, while the presence of
connection-state per path makes quick failure recovery easier, it
could have scaling implications since a large number of client ses-
sions may have to be restored on failure of an overlay link. Also,
during path creation or restoration, finding a path through a set of
intermediate service instances involves a graph computation based
on the information collected by the link-state layer. This could
have memory or CPU bottlenecks. The choice of a link-state al-
gorithm is good for gathering global information. However, link-
state algorithms consume more network bandwidth due to flood-
ing, and this could be a potential source of bottleneck. At the low-
est layer, failure detection itself is a concern when service-cluster
peers monitoring one another are separated over the wide-area In-
ternet. A conservative mechanism to detect failures could mean
longer detection times in general, while a more aggressive mech-
anism may trigger spurious path restorations. We now turn to de-
scribing our evaluation testbed to study these overheads.

3 Experimental testbed

Evaluation of an Internet-scale system like ours is challenging
since performance metrics such as time-to-recovery from failure

2We use a fixed timeout; we do not consider a more sophisticated adap-
tive timeout mechanism in this paper.



and scaling with the number of clients depend on Internet dynam-
ics. A large-scale wide-area testbed is cumbersome to setup and
maintain. Simulations are inappropriate since they do not capture
processing bottlenecks. They also do not scale for large numbers
of client sessions. We have developed a network-emulation plat-
form for our experiments. We run a real implementation of the
algorithms and mechanisms, on multiple machines in a cluster en-
vironment, but simply emulate the wide-area network character-
istics between the machines. This is done below the application.
Such an emulation-based platform is provided by the Millennium
cluster (www.millennium.berkeley.edu).

App

Library

Rule for 1−−>2

Rule for 1−−>3

Rule for 3−−>4

Rule for 4−−>3

Node 4

Node 3

Node 2

Node 1 to node 2
UDP pkt

Library redirects

UDP−in−UDP
to emulator

Emulator
forwards to node 2

using raw IP

applies rule,
Emulator

Figure 4. Emulator setup

For flexibility, we have implemented our own emulation packet
modifier. The implementation is at user-level using raw-IP sockets
and can handle UDP datagrams. In our setup, we have all traffic
pass through a single node that runs such a packet modifier – we
call this machine the emulator. This testbed setting is shown in
Fig. 4. Each emulation node in our testbed is a 500MHz Pentium-
III machine with up to 3GB memory, and a 500KB cache. Each is
a 2-way, or 4-way multi-processor, and runs Linux 2.4. (Note that
this emulation cluster is quite different from the service-clusters
in our architecture. In fact, each node in our emulation setup rep-
resents a cluster manager of a service-cluster/overlay-node in our
architecture, and runs the software shown in Fig. 3). We have
a real implementation of the algorithms – the code is finally re-
linked with a library that redirects packets via the emulator node.
The emulator, besides acting as a router, has rules for capturing
the behavior of each overlay link between pairs of overlay nodes
(Fig. 4). In our architecture, the actual application data traffic does
not pass through the CM. And hence in our emulation too, we
only capture the control-traffic between the CMs. We have mod-
eled delay/latency behavior between overlay nodes, as well as the
frequency and duration of failures of the overlay link. The actual
settings for these packet handling rules, and the choice of the over-
lay topology itself, are presented in Sec. 4.1.

Table 1 presents a brief characterization of our emulator setup.
The emulator is setup on a Pentium-4 1500MHz machine with
256MB memory, and 256KB cache, running Linux 2.4.2-2. It is
on a 100Mbps network. We have traffic passing through the emu-
lator at a constant packet rate, with all packets being the same size.
The emulator fires a randomly picked rule for each packet. In this
setup, we measure the percentage of packets lost at the emulator.

In Table 1, the scaling limits of the emulator are reached in both
dimensions – at large packet sizes and at high packet rates. We
note that the emulator performs quite well for up to a packet rate
of 20,000 pkts/sec, for pkt sizes below 500 bytes. This constitutes
about �����������	��
����	�
��������������� , which is close to the ethernet

10,000/sec 15,000/sec 20,000/sec 25,000/sec

250B 0.000 0.020 0.005 23.9
500B 0.010 0.020 0.185 20.4
800B 0.86 8.72 29.24 44.1

1100B 1.63 36.14 49.75 64.71
1400B 36.36 50.65 65.48 68.95

Table 1. % packets lost by the emulator

limit in our setup. We shall refer back to these numbers later to
verify that in our experiments, we do not exceed these limits of
operation of the emulator.

4 Evaluation

In this section, we turn to the evaluation of our system. In
our set of experiments, we consider several metrics: (a) the time
to recovery of client path sessions, after failure detection, (b) the
time to detection of failures in Internet paths, (c) the additional
control overhead due to spurious path restorations, and (d) other
memory, CPU, and network overheads in our software architecture
(Fig. 3). We study client session recovery time as a function of
the number of client sessions (load) at each CM. We analyze two
different recovery algorithms in Sec. 4.2 and Sec. 4.3. For these
set of experiments, we use realistic modeling of Internet delay, but
use controlled link failures. We then turn to a trace-based study
of Internet path failure behavior in Sec. 4.4, and look at failure
detection. Using this trace data, we study the time to path recovery
under realistic Internet failure patterns in Sec. 4.5. This allows us
to examine spurious path restorations. Finally, we look at other
sources of overhead in our system in Sec. 4.6.

4.1 Parameter settings for the experiments

Before presenting our experiments, we explain two important
parameter settings in this subsection: the overlay topology, and the
nature of performance variation of the links in the overlay network.
The Overlay Network Topology

We use the following procedure to generate the overlay net-
work. We first generate an underlying physical network with a
Transit-Stub topology. This graph has a total of 6,510 nodes, with
14 transit ASes, each with 15 nodes, 10 stub-ASes per transit-
node, and 3 nodes per stub-AS [19]. This topology is generated
using the GT-ITM package. We then select a random subset of N
nodes from this physical network to generate an N-node overlay
topology. Next, we examine pairs of overlay nodes in the order
of their closeness and decide to form peering relations between
these. These peering relations correspond to overlay links in our
architecture (Fig. 2). Overlay links are thus equivalent to physical
paths. In this process of peering, we impose the constraint that
no physical link is shared by two overlay links. (Although this
could theoretically result in a disconnected overlay topology, for
the graph that we used, the final overlay network was connected).
Overlay Network Parameters

To study our mechanisms for service-level path creation, adap-
tation, and recovery, we vary two network parameters: latency, and
occurrence of failures (packet drops are modeled simply as short
failures). We use these two parameters to capture the effect of In-
ternet cross-traffic in our emulations. Each rule at the emulator
involves these two parameters. Our mechanisms for path choice
optimize the metric of path latency from entry to exit.



Latency Variation: To model this, we use results from a study
of round-trip-time (RTT) behavior on the Internet [2]. We make
use of two results: (1) Significant changes (defined as over 10ms)
in average RTT, measured over 1 minute intervals occur only once
in about 52min. This value of 52min is averaged over all host-
pairs. (2) The average run length of RTT, within a jitter of 10ms,
is 110seconds across all host-pairs. The first result says that sus-
tained changes in RTT occur slowly, and the second result says that
the jitter value is quite small for periods of the order of 1-2minutes.

We use these as follows. The costs of edges of the network
are as generated by the GT-ITM package. For the overlay links,
the cost is simply the addition of the physical path between the
overlay nodes. This cost is however, only relative. We normalize
this by setting the maximum overlay link cost of 100ms – this is
the one-way cost. We thus get a base-value for the latency in an
overlay link. Given a base-value � for the latency, we vary the
latency between � and ��� . Such a variation of overlay link cost
gives a maximum one-way latency of � ��� ��� � ������� � , and a
max RTT of up to � � ����� ��������� � . We impose the constraint
that significant sustained changes happen once in an “epoch” of
length 52min (using result (1)). Also, to have some variability,
we set a value of 15min for this epoch for 10% of the overlay
links, and 100min for another 10% (the rest 80% have the value of
52min). Within an epoch of RTT value, 1min averages are varied
within 10ms (in accordance with (1)). And within a minute, jitter
is within 10ms (in accordance with (2)).

In our modeling of latency variation, we do not include occa-
sional, isolated RTT spikes that do happen [2]. Instead, we model
RTT spikes also as loss-periods/failures, which is worse than RTT
spikes. Although the study we have used is somewhat old, it is ex-
tensive. Also, our own UDP-based experiments in Sec. 4.4 agree
in spirit with observation (2) above – in our experiments, we ob-
serve that outage periods lasting beyond 1-2sec are very rare.

Occurrence of failures: For the initial set of experiments, we
fail graph links in a controlled fashion. We then used a trace-based
emulation of network failures. We postpone a discussion of this
emulation to Sec. 4.4.

4.2 Time to path recovery: end-to-end recovery

The Algorithm
We first consider a flavor of path recovery that we term end-

to-end recovery. Referring back to Fig. 2, consider the failure
between services S1 and S2. In end-to-end recovery, two steps
are involved. The downstream node (S2) detects the failure, and
passes the information to the exit overlay node (B). The exit node
then initiates a new path computation, which results in the path
through S1’ and S2’ (dotted lines at the bottom of the figure). The
path computation is a graph algorithm. The metric of distance in
our implementation is edge-latency, which is additive. The well
known algorithm for min-cost path computation over an additive
metric is the Dijkstra’s algorithm. We cannot apply this algorithm
directly, since in our case the path has constraints that it has to
pass through a given set of services. We have developed and im-
plemented a generic �	��
���
 -stage modification to Dijkstra’s algo-
rithm – this gives the shortest “constrained” path, when we need �
intermediate services.

This path computation is done by the exit node during path
creation as well as end-to-end path recovery. (During path cre-

ation, the client sends its request for path creation to the exit node
directly). After path computation, the exit node sends control mes-
sages “upstream” to setup the original or recovery path. The mes-
saging for path creation and failure recovery for each client path
session is done independently. Also, as mentioned in Sec. 2, all
the computations and control messaging described above are done
at the cluster manager of each overlay node. Hence in our discus-
sion below, unless mentioned otherwise, we use the terms “cluster-
manager” and “overlay-node” interchangeably – the cluster man-
ager is the one at the overlay cluster node.
Experiments

There are two components to the above algorithm: path compu-
tation, and the distributed messaging. Here, we study the latencies
in the distributed messaging required to effect end-to-end recovery
(path computation is evaluated in Sec. 4.6). In particular, we study
the effect of scaling the system with respect to the number of client
path sessions. We capture our metric of time-to-recovery of client
sessions as a function of the number of client sessions that “termi-
nate” at each overlay node – that is, the number of client sessions
for which the overlay node is the exit node, and hence its CM is re-
sponsible for path creation and recovery for that session. Note that
the number of client path sessions passing through (as opposed to
terminating at) an overlay node will be higher since each client
path passes through many overlay nodes. In the rest of the discus-
sion, we refer to the number of client sessions terminating at each
overlay node as the load L on it (or its CM).

In this set of experiments, we use a 20-node overlay network
generated as described earlier. This graph has 54 edges. There
are a total of ten different services, each with two replicas in the
overlay network. Each client path session involves two different
services from among these. Note that although we have only two
logical services, the path could stretch across many more overlay
nodes, via the no-op services.

Across the runs, we vary the load L from 25 to 500 paths per
CM, with equal load at all the 20 CMs. For a given load, we first
establish all the paths (total #paths = #paths terminating at a CM �
20 CMs). The pair of services for each of the client paths is chosen
at random. We then deterministically fail the link in the overlay
network with the maximum number of client sessions traversing it
– the worst case in a single-link failure. We conclude the experi-
ment shortly after all the failed paths have been recovered (a few
seconds). We then compute the time to recovery, averaged over
all the paths that failed and were recovered. Fig. 5(a) shows this
average metric plotted against the load as we defined above. The
error bars indicate the standard deviation.

There are several things we note about the plot. Firstly, the
average time to recovery remains low, below 600ms even for a
load of up to 500 paths per cluster manager. Secondly, this average
increases only slowly as the load increases – this suggests that
the system has not reached its saturation point yet. Thirdly, the
variance of the time-to-recovery across all failed paths is large at
high load. To explain this, we plot another graph.

Fig. 5(b) shows the CDF of the time-to-recovery of the failed
paths for different values of the load. We see that the majority of
the paths recovery well within 1sec, and a small fraction of the
paths take over 1sec to recover (notice the flat region in the CDF).
This is due to the following reason. The path recovery control
messages are transmitted using the reliable UDP messaging layer



0

200

400

600

800

1000

0 100 200 300 400 500A
ve

ra
ge

 ti
m

e 
to

 p
at

h 
re

co
ve

ry
 (

m
s)

Number of client sessions per CM

e2e

0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600 1800

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

Time to recovery (ms)

load=200
load=250
load=300
load=400
load=500

Load #pkts #pkts Max rate
L lost lost at emul.

by CMs by emul. (pkts/s)

200 0 99 20,640
250 0 163 19,240
300 0 201 19,630
400 0 578 21,200
500 0 753 21,590

Figure 5. (a) Time to recovery vs. Load (b) CDF of time-to-recovery for different values of load (c) Detecting the bottleneck

of Fig. 3. This layer implements a re-transmit after 1sec, if there is
no reply to the first packet3 . Such a re-transmit occurs for the path
recovery control messages since the first control message is lost,
at higher load. A certain fraction of the paths being recovered thus
experience significantly higher recovery time than others. This
explains the high variance at high load, in Fig. 5(a).

There are two reasons why packet losses can occur: (1) excess
load in processing the path recovery messages at the CMs, or (2)
bottleneck at the emulator in our setup. (Note that we have not
yet modeled packet-losses/outages on the overlay links. Also, the
control packet losses could not be because of the deterministically
failed link, since our algorithm does not send any recovery mes-
sages on the failed link itself). Case (1) would mean that we have a
bottleneck in our software architecture, while case (2) would mean
that the emulator setup is being stressed. To check this, we instru-
ment the emulator to: (a) count the number of packets it sent and
received, and (b) measure the packet rate it saw, in 100ms win-
dows. The CMs also keep track of the number of packets they
send and receive. Using (a), we compute the number of control
packets lost at the CM, and the number of control packets lost in
the emulator setup. We use (b) to check against the emulator limits
given in Table 1.

In Fig. 5(c), we tabulate these values for different loads. We
notice that there are no packet losses at any of the CMs, meaning
that the bottleneck is not in the message processing at these nodes.
However, the emulator node (or the network in-between) loses a
small number of packets, and this number increases with the num-
ber of paths in the system. The table also gives the maximum rate
seen by the emulator in 100ms windows. Referring back to Ta-
ble 1, we see that the emulator setup is close to its limits in these
experiments, in terms of the packet rate. (The sizes of all control
packets were within 300 bytes). Note that for every packet lost by
the emulator, a client session recovery could experience a control
message re-transmit, and thus a recovery time higher than 1.0sec.

We thus conclude with certainty from the above experiments
that the system can handle at least 200 paths/CM easily. Also,
since no packets are lost by the CMs due to processing bottle-
necks (column 1 of the table in Fig. 5) even at higher loads, we
can say with reasonable certainty that the scaling limits of the CMs
have not been reached even at loads of 400-500 paths/CM. This is
also corroborated by the fact that the average time-to-recovery in-
creases only slowly with increasing load – if saturation point had
been reached, we would have expected to see a steep increase in
the plot at this saturation point.

Our cluster manager machines are Pentium III 500MHz quad-

3We use a value of 1sec for the first re-transmit, 1.5sec for the second
re-transmit, 2sec for all further re-transmits.

processor machines. During our experiments, since the cluster was
in production use, we were not able to get fully unloaded ma-
chines, but always used the least loaded set of machines. The
number of 400-500 simultaneous paths per cluster manager is a
reasonable number, since we are dealing with heavy-weight ap-
plication services such as video transcoders, text-to-speech con-
verters in our examples given earlier. For comparison, the text-to-
speech service we implemented in [15] could support only about
15 simultaneous client sessions on hardware similar to those run-
ning our CMs. This means that in deploying a service cluster, the
amount of provisioning required for cluster manager functionality
would be small in comparison to that required for actual services
such as the text-to-speech engine. Also, note that a cluster can
have multiple CMs dealing with different sets of client path ses-
sions – the system can be provisioned with more cluster managers
to support a larger number of simultaneous client sessions.

We make one final observation. We have used latency as a
metric for path creation, and in the above experiments, failed the
overlay link with the maximum number of client paths traversing
it. This represents a worst-case scenario. This is because, as is
well known, a metric such as latency is very poor in distributing
load across the network. In fact, in our experiments above, we
observed that the load across the overlay links was highly skewed.
The system can be expected to scale even better if a load balancing
metric such as cluster-load is used. One of our immediate future
plans is to work with such a metric.

4.3 Time to path recovery: local recovery

The Algorithm
We now examine an alternate method of recovery which we

call “local” recovery. This is illustrated in Fig. 2 – the dotted lines
between S1 and S2, above the original path. Here, the idea is that
we patch a path locally by routing around the failure. The down-
stream node detects the failure, and finds an alternate path from its
peer node, to replace the failed link. It then sends signaling mes-
sages along the new local alternate path, to be added as a patch
to the original path. This recovery mechanism has the advantage
over end-to-end recovery that since the signaling messages are lo-
cal, the recovery time can be lower. However, since the path is be-
ing fixed locally, we might lose out on global optimization. That
is, the resultant path after local recovery might have a higher cost
than if end-to-end recovery had been used. We look at the nature
of this trade-off now.
Experiments

Like in our earlier set of experiments, we have a set of runs
with varying load; in each run, we create paths before-hand, and
then fail the overlay link with the maximum number of paths go-
ing through it. Apart from the trade-off mentioned above, there is



a further issue with local recovery. Since paths are constrained to
pass through nodes with services, they may not be simple graph
paths: they may have repeated occurrences of nodes or edges in
them. An example is shown in Fig. 6(a). Since local recov-
ery hides the recovery information from the rest of the nodes in
the path, handling race conditions in distributed messaging, when
there are multiple occurrences of nodes in the original path, be-
comes difficult. For this reason, we fall back on end-to-end recov-
ery when the original path has repeated occurrences of nodes.

Hence in each run, we use local recovery for client sessions
whose original paths do not have repeated nodes, and end-to-end
recovery for other client sessions. In each run, there were a sig-
nificant fraction (at least 25%) of client sessions in each category
– it was not the case that one kind of recovery was applied for
most client sessions in any run. This has the side effect of mak-
ing our comparison simpler, since we can compare the average
time-to-recovery of paths, under either algorithm, in the same run.
The two plots in Fig. 6 illustrate the trade-off between the two al-
gorithms. The first graph shows the average time-to-recovery as a
function of the load, much as in Fig. 5(a). The second graph shows
the other metric: the ratio of the cost of the recovery path, to the
cost of the original path, as a function of the load. (Recall that the
path cost in our case the end-to-end latency).

In the first graph, we note that the time-to-recovery has low
values, around 700ms, as earlier. Also, the variance in the time-
to-recovery goes up with load, as in Fig. 5(a). The small non-
uniformity in the plot is understandable given the magnitude of
the variance. Another point we note is that local recovery has con-
sistently lower average recovery time, as expected. Although it has
lower time-to-recovery, we note that the difference is very low in
absolute terms – within 200-300ms. (As our discussion in Sec. 4.4
will show, these small differences will be dwarfed by the time to
failure detection in Internet paths – about 1.8sec).

The second graph shows the flip side of local recovery – it re-
sults in paths that are costlier than with end-to-end recovery. Here,
the difference between local and end-to-end recovery are signifi-
cant. Local recovery results in paths that are 20-40% costlier than
the original path, due to the additional re-route in the middle of
the original path. On the other hand, end-to-end recovery causes
a maximum extra cost of 10% over the original path, and in many
cases actually improves the path cost over the original path. Im-
provement in path cost over the original path is due to the fol-
lowing reason. The latency metric along overlay links is variable,
as explained in Sec. 4.1. Hence the original min-cost path is no
more the min-cost path after a while – at the time of path recovery.
Hence, when an alternate end-to-end path is setup, it can incur a
lower cost than the original path. While these differences of 10-
30% one way or another may not greatly affect the performance of
the client path when using the latency metric, it is significant if we
use a graph metric such as load on the cluster node.

4.4 Modeling Internet failure behavior

So far in our experiments, the failures in the overlay links have
been artificially introduced. We have not realistically modeled
how often Internet path failures happen, or how long they last.
While this allowed us control over our experiments to understand
the system behavior, we would like to see our system performance
given realistic Internet path failure patterns. Further, an aspect we

have not addressed so far is, how quickly failures can be detected,
reliably. We turn to these issues now.

Failure detection: A key aspect of our system is its ability to
detect failures in Internet paths. To achieve high-availability, we
need to detect failures quickly. In particular, we are concerned
about keeping track of the liveness of the wide-area Internet path
between successive components in the service-level path. An ex-
ample is shown in Fig. 2 – the first leg after S1. This is important
since unlike the telephone network, the Internet paths are known
to have much lesser availability [13, 12].

The straightforward way to monitor for liveness of the network
path between two Internet hosts is to use a keep-alive heart-beat,
and a timeout at the receiving end of the heart-beat to conclude
failure. There is a notion of a false-positive when the receiver
concludes failure too soon, due to an intermittent loss. We term a
path restoration triggered by such a false-positive to be a spurious
path restoration. There is a trade-off between the time to failure
detection and the rate of false-positives. If the timeout is too small,
failures are detected rapidly, but the false-positives increase, and
vice-versa when the timeout is too large. We study this in detail
now, using wide-area trace data.

Trace data: For our purposes, we need a model for the inci-
dence and duration of failures. There have been studies of failures
or packet loss patterns at small time scales (less than 1sec) [18, 6].
These have shown that there is correlation of packet loss behav-
ior within one second, but little correlation over a second. Further
studies have estimated failures that last for over 30sec [20, 7]. To
the best of our knowledge, there does not exist publicly available
data, or a study, that gives a probability distribution of these failure
gap periods on a wide-area Internet path.

We have collected data to arrive at such a probability distribu-
tion. We run a simple UDP-based periodic heartbeat with a pe-
riod of 300ms between pairs of geographically distributed hosts.
The set of hosts from which we collected data are: Berkeley, Stan-
ford, CMU, UIUC, UNSW (Australia), and TU-Berlin (Germany).
This represents some trans-oceanic links, as well as Internet paths
within the continental US (including Internet2 links). We have
data for nine pairs of hosts among these, a total of 18 Internet
paths. Six of the nine pairs of data were collected in Nov 2000,
and three in Oct 2001. One pair of hosts was a repeat between
these two runs. The heart-beat exchange was done for an extended
period of time – for 3-7 days for the 9 pairs of hosts.

To understand the nature of Internet path outages, we com-
pute the gaps between successive heart-beats at the receiving end.
Given the heart-beat period of 300ms, we attribute gaps of length
below 600ms to jitter in the arrival times. And, we attribute gaps
of 600ms and above to outages in connectivity. Looking across
all gap-lengths in an experiment, we get a distribution. Fig. 7(a)
shows this distribution as a CDF for 3 pairs of hosts. Note that
the y-axis starts from 99.9%. (The plots for other host-pairs are
similar and we do not show them here).

We observe from the data that there is a sharp knee in the CDF
between about 1.2-1.8sec for most graphs. This means that there
are very few temporary outages that last longer than the knee-
point. To see this more clearly, we view the data in another form.
We compute the rate of occurrence of gaps of a given duration,
averaged across an entire trace. Fig. 7(b) plots this rate of occur-
rence on a log scale, for various values of the outage duration on



Service Cluster 3
(has service s1)

Required path:
Exit node: 2
Entry node: 1
Service reqd: s1

Shortest path:
1−−>3(s1)−−>1−−>2
(node 1 repeats)

Service Cluster 1

Service Cluster 2

Cost = 5

Cost = 5

Cost = 20

0

500

1000

1500

2000

0 100 200 300 400 500A
ve

ra
ge

 ti
m

e 
to

 p
at

h 
re

co
ve

ry
 (

m
s)

Number of client sessions per CM

e2e
local

0

0.5

1

1.5

2

0 100 200 300 400 500A
vg

. i
nc

. i
n 

co
st

 a
fte

r 
re

co
ve

ry
 (

ra
tio

)

Number of client sessions per CM

e2e
local

ratio=1
ratio=1.25

Figure 6. (a) Node repetition: an example (b) Local vs. E2E recovery (time-to-recovery) (c) Local vs. E2E recovery (path cost)

0.999

0.9992

0.9994

0.9996

0.9998

1

0 600 1200 1800 2400 3000 3600 4200 4800

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

Failure outage period (ms)

dest=UNSW,src=UCB
dest=UCB,src=UNSW

dest=UCB,src=UIUC
dest=UIUC,src=UCB
dest=CMU,src=Stan
dest=Stan,src=CMU

0.01

0.1

1

10

0 900 1800 2700 3600 4500 5400

R
at

e 
of

 o
cc

ur
re

nc
e 

(p
er

 h
ou

r)

Failure outage period (ms)

dest=UNSW,src=UCB
dest=UCB,src=UNSW

dest=UCB,src=UIUC
dest=UIUC,src=UCB
dest=CMU,src=Stan
dest=Stan,src=CMU

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

Time to recovery (ms)

90%

Figure 7. (a) Gap distribution (CDF) (b) Outage occurrence rate (c) Performance under realistic failures

the x-axis. Even in the log scale, there is a sharp knee around 1.2-
1.8sec for all the plots. We use this set of data in two ways: (1)
we use the distributions in Fig. 7(a) to model the distribution of
outage periods on the Internet, and (2) we use the empirical value
of 1.8sec, as suggested by the knee-points in either plot, as a time-
out to conclude failures. We now return our discussion of path
recovery time, but with the above modeling of Internet failures.

4.5 Performance under realistic Internet failure
behavior

In this experiment, we wish to study two things: (a) the extent
of spurious path restorations under realistic Internet outage pat-
terns, and (b) the performance of our recovery messaging under
realistic Internet packet losses as given by our traces in the prior
section. Given the set of CDFs of outage durations in the earlier
section, we fail links in our overlay with a particular probability,
for a particular duration, according to the distribution as in the
graph (Fig. 7(a)). For an overlay link in the testbed, we choose
one of the 18 distributions at random. We have a fixed timeout of
1.8sec to detect failures between a pair of overlay nodes. We now
run the same experiment, with the 20-node graph, with a load of
300 paths per cluster manager (total number of paths in the sys-
tem = ��� ������� ��������� ). We use only the end-to-end recovery
algorithm for this run. We let the system run for a period of 15min.

During the run, across all the 54 edges in the graph, there are
162 outages that last 1sec or more, of which 32 outages last 1.8sec
or more, and 7 last for 20sec or more. There are 11,079 end-to-end
recovery attempts triggered. This represents an average of about 2
recoveries per path during the experimental run. 10,974 (99.05%)
of these recovery attempts were successful.

For a number of the shorter outages, the outage time itself is
comparable to the recovery time. Such short outages are, in some
sense, false-positives that trigger spurious path restorations. Ide-
ally, these should not have triggered any recovery – but this hap-
pens due to our aggressive timeout mechanism to detect failures
quickly. To quantify the fraction of spurious path restorations in

our experimental run, we count the number of recovery attempts
that were a result of a failure lasting less than 3sec.

We find that, of the 11,079 recovery attempts, 6,557 (59.18%)
are caused by such short outages. This figure of about 60% for
the fraction of spurious restorations triggered merits some discus-
sion. We first note that even if a recovery attempt is spurious,
application data is not lost any more than during normal Inter-
net performance, without our recovery algorithms. This is be-
cause the original path is torn down only after the new path has
been established. The only overhead of a spurious recovery at-
tempt is in the control messages introduced by our service compo-
sition layer. The control overhead itself is minimal, and can easily
be handled with little additional provisioning in terms of cluster
managers, as shown in Sec. 4.2. In absolute terms, spurious path
restorations and failures themselves occur infrequently. The av-
erage rate of occurrence of failures per link in our experimental
run is: �����
	���
������������ ��� ����������������� � ��� � 
�� ��� � ����� � 
�� �
��
!����� ��
 � ��� ����"
�#�
�$������� � . The rate of occurrence of spuri-
ous restorations is even lower since only a fraction of the outages
represent spurious failure detections. Hence spurious restorations
are a small price to pay for the benefits of quick path recovery.

Referring to the graph in Fig. 7(a), if we had a failure detection
time close to 1sec or less, we are much more likely to have many
spurious restorations. At 1sec on the x-axis, we are not yet yet
beyond the knee-point. On the other hand, if we have a failure
detection timeout much longer than 1.8sec (beyond the knee), the
number of spurious path restorations might go down, but we will
have a much longer time-to-detection of failures. Since we have
a manageable frequency of spurious restorations with a timeout of
1.8sec, this is a reasonable timeout to have for failure detection.

An important aspect of path restorations (including spurious
ones) is that of system stability. If the absolute rate of occurrence
of path restorations is high in the system, instability could result.
That is, paths could be switched repeatedly, with cascading or al-
ternating failures due to overload in portions of the overlay net-
work. In our experiment above, we did not observe any such insta-



bility. In retrospect, the reason for this is simple – our system can
easily handle loads of 300 paths/CM (which is what we had in the
experiment above), and there are no processing bottlenecks that
drive the system to an unstable state. However, at higher loads, the
rate of path restorations, and the fraction of spurious path restora-
tions, could be important factors in the stability of the system. We
plan to take a closer look at this aspect in the near future, using a
more scalable, distributed emulation platform.

Fig. 7(c) shows the CDF of the time-to-recovery of all the
paths. Note the flat region in the CDF, as in Fig. 5(b). This rep-
resents a re-transmit of a control message during path recovery.
Such re-transmits are due to the Internet packet losses we have
modeled in this experiment. The plot indicates that over 90% of
the recoveries are completed within 1sec. This represents the re-
covery time under realistic packet loss as modeled by our outage
periods. Such a quick restoration represents orders of magnitude
better performance than Internet path recovery that takes several
tens of seconds to minutes [12].

4.6 Other sources of overhead

So far we have focused on the path recovery algorithm com-
ponent of our architecture. The other pieces are (1) the peer-peer
heart-beat and measurements, (2) the link-state propagation, and
(3) the path creation algorithm itself. The first consumes minimal
resources: the heart-beat is sent every 300ms in our implementa-
tion. And peer-peer latency measurements are done once every
2sec. The bandwidth consumed by these is miniscule.

The second, link-state propagation, is performed whenever
there is a change in the link-status (dead/live), or when there is
a significant change in the latency over the link. Apart from this,
we also have a soft-state link-state propagation every 60sec to han-
dle dynamic graph partitions. Given the nature of latency variation
as described earlier, sudden large changes in latency are rare. So
most link-state floods are sent over the network due to link fail-
ures or restorations. In the experiment we described in the previ-
ous subsection, 150 link-state floods happen over the entire run of
the experiment lasting 15min, notifying nodes of a link failure or
link recovery. Given that a link-state flood means a single message
over each link in the graph, there are only 150 messages per link
due to these floods over the entire run. This is also minimal. We
expect this number to increase linearly as the number of edges in
the graph increases. This is not too bad however, since we do not
stipulate a complete graph for the overlay network as in [4].

Another possible source of overhead is the graph computation
involved during path creation. In fact, the same graph computa-
tion is invoked during path recovery as well. The complexity of
Dijkstra’s algorithm is � � ����
 ��� 
 , where � is the number of
edges and � is the number of nodes in the graph. The complex-
ity of our �	� 
 ��
 stage modification is �	� 
 ��

��� ������
 ��� 
 .
In our implementation, this algorithm performs quite well. We
performed micro-benchmark studies (not an emulation run) of this
algorithm alone, with a 6,510-node overlay network, with 20,649
edges. On the configuration of our cluster machines, the compu-
tation takes about 50ms, and only about 3MB of memory. This
figure of 50ms could be significant overhead if this computation is
done for every path recovery. However, we perform an optimiza-
tion that we term path caching. We run the algorithm, and store the
resulting “tree” structure for requests for path creation/recovery in

the near future. We store one such tree for every kind of service-
level path (not every client path session). We update this tree only
when the graph state changes – i.e., only 150 times, once for each
link-state update, during our experimental run in the previous sub-
section. Since we do not run this algorithm for every path cre-
ation/recovery, this is not a source of bottleneck.

4.7 Summary

In summary, our results show that failure recovery can be per-
formed in our overlay network of service clusters, within 1sec for
over 90% of client sessions (Sec. 4.5). Our trace-data, and the
experiments using those show that failure detection can be quite
aggressive, with a timeout as low as 1.8sec, with an infrequent
occurrence of spurious path restorations – about once an hour in
our experiments. Hence, overall, paths can recover from outages
within about � 
 ��� ������� � seconds. This would be of tremendous
use to applications such as video streaming – without our mech-
anisms for recovery, client sessions could experience outages that
last for several minutes [12]. This figure of 2.8 seconds is defi-
nitely good enough for real-time, but non-interactive applications,
which usually buffer about 5-10sec of data. For interactive appli-
cations, this may not be perfect, but would provide significantly
better end-user experience than without our recovery mechanisms.

Our data shows that there is no bottleneck with the control mes-
sage processing involved during path recovery, so far as we have
been able to scale our emulation testbed. We explored the use of
local recovery – while this results in quicker recovery under low
load, the local nature of the recovery could lead to sub-optimal
path metric for the recovered path.

5 Related Work

The idea of service composition itself is not novel, a simple ex-
ample being unix piping. The TACC project [10] developed mod-
els for fault-tolerance of composed services within a single clus-
ter. The solution is based on monitoring using cluster-managers
and front-ends. Apart from the TACC model, cluster-based solu-
tions for fault-tolerance have been studied for other kinds of ap-
plications as well. The Active Services [3] model uses a soft-state
mechanism for maintenance of long-lived sessions. The LARD
approach [14] does load-balancing of client requests for a web-
server within a cluster. However, such cluster-based approaches
do not address performance or robustness across the wide-area.

In the context of web-servers, the problem of selecting an ap-
propriate service instance in the wide-area based on network and
server performance has been studied by earlier approaches [17, 9].
However, for composed services, we have multiple “legs” of the
service-level path, and we need to optimize the overall composi-
tion, and not just one leg of it. Also, web-server selection mecha-
nisms do not address fail-over for long-lived sessions, since web-
sessions typically last for a short period of time (a few seconds).

Routing around failures (above the IP level) in the wide-area
has been addressed in other contexts. Content-addressable net-
works [16] provide an overlay topology for locating and routing
towards named objects. The RON project [4] also uses an overlay
topology to route around temporary failures at the IP level. In the
specific context of video delivery, packet-path diversity has been
used as a mechanism to get around failures in [5]. However, these



mechanisms are not applicable for composed services – with com-
posed services there is the constraint that the alternate recovery
path has to include the component services as well.

The IETF OPES group [1] defines an architecture for “open
services” that can be “plugged”, or composed. However, this ar-
chitecture does not include mechanisms for recovery when a com-
posed session fails. ALAN [11] proposes application-layer routing
by proxylets. The operational model there is different in that the
proxylets can be dynamically created and moved around. In our
case, the services are deployed by different service providers, and
are heavy-weight in nature. Also, ALAN does not have quick-
recovery from failures as one of its goals. In our work, we specifi-
cally evaluate the recovery aspect of the system.

A unique aspect of our work is the use of an emulation-based
testbed for evaluation. Most systems in the networking world are
evaluated using either simulations or real experiments – neither of
these approaches is suited for our purposes. Our emulation testbed
using the Millennium cluster of machines has allowed better mod-
eling than simulations, and more control than real experiments.

6 Conclusions and Ongoing Work
We started with the goal of being able to compose services in

a robust fashion, providing recovery mechanisms for long-running
client sessions. Our architecture for this is based on an overlay
network of service clusters. In this paper, we have evaluated our
architecture for its primary goal of quick recovery of client ses-
sions. Our approach is based on a system distributed across the
wide-area Internet. Its evaluation presents a challenge since a sim-
ple simulation-based approach would not only have been unreal-
istic, but would also have failed to identify the bottlenecks in a
real system implementation. Developing and maintaining a large
scale testbed across the wide-area Internet would have been cum-
bersome, and would not have been suited for a controlled design
study. Our emulation-based approach has allowed a controlled de-
sign study with a real implementation. The control overhead in
our software architecture is minimal, and requires little additional
provisioning. Our trace-driven emulation shows that our recov-
ery algorithms can react within 1sec for most (over 90%) of the
client sessions. Network failure detection itself can be done with a
couple of seconds, with a manageable frequency of spurious path
restorations. Our ongoing work includes improving our emulation
testbed to perform further scaling experiments, and to study issues
of load-balancing and stability in path restoration. We have also
developed a set of composable services [15]; we plan to test the
usefulness of our recovery algorithms for these applications.
Achnowledgements: We thank L. Subramanian, S. Machiraju, A.
Costello, S. Agarwal, and the anonymous reviewers for comments on ear-
lier versions of this paper. We thank M. Baker, M. Roussopoulos, J.
Mysore, R. Barnes, V. Pranesh, V. Krishnaswamy, H. Karl, Y-S. Chang,
S. Ardon, and B. Thai for helping us with the wide-area trace collection.

References
[1] Open Pluggable Edge Services. http://www.ietf-opes.org/.
[2] A. Acharya and J. Saltz. A Study of Internet Round-Trip

Delay. Technical Report CS-TR 3736, UMIACS-TR 96-97,
University of Maryland, College Park, 1996-97.

[3] E. Amir. An Agent Based Approach to Real-Time Multimedia
Transmission over Heterogeneous Environments. PhD thesis,
U.C.Berkeley, 1998.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and
R. Morris. Resilient Overlay Networks. In ACM SOSP, Oct
2001.

[5] J. G. Apostolopoulos. Reliable video communication over
loss packet networks using multiple state encoding and path
diversity. In Visual Comm. and Image Proc., Jan 2001.

[6] J. C. Bolot, H. Crepin, and A. V. Garcia. Analysis of audio
packet loss in the Internet. In NOSSDAV, Apr 1995.

[7] B. Chandra, M. Dahlin, L. Gao, and A. Nayate. End-to-end
WAN Service Availability. In USITS, Mar 2001.

[8] T. M. Chen and T. H. Oh. Reliable Services in MPLS. IEEE
Communications Magazine, Dec 1999.

[9] S. G. Dykes, C. L. Jeffery, and K. A. Robbins. An Empirical
Evaluation of Client-side Server Selection Algorithms. In
IEEE INFOCOM, Mar 2000.

[10] A. Fox. A Framework for Separating Server Scalability and
Availability from Internet Application Functionality. PhD
thesis, U.C.Berkeley, 1998.

[11] A. Ghosh, M. Fry, and J. Crowcroft. An Architecture for
Application Layer Routing. In IWAN, Oct 2000.

[12] C. Labovitz, A. Ahuja, A. Abose, and F. Jahanian. An Ex-
perimental Study of Delayed Internet Routing Convergence.
In ACM SIGCOMM, Aug/Sep 2000.

[13] C. Labovitz, A. Ahuja, and F. Jahanian. Experimental Study
of Internet Stability and Wide-Area Network Failures. In
FTCS, 1999.

[14] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-Aware Request
Distribution in Cluster-Based Network Servers. In ASPLOS,
Oct 1998.

[15] B. Raman, R. H. Katz, and A. D. Joseph. Universal Inbox:
Providing Extensible Personal Mobility and Service Mobility
in an Integrated Communication Network. In WMCSA, Dec
2000.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Network. In
ACM SIGCOMM, Aug 2001.

[17] S. Seshan, M. Stemm, and R. H. Katz. SPAND: Shared Pas-
sive Network Performance Discovery. In USITS, Dec 1997.

[18] M. Yajnik, S. B. Moon, J. F. Kurose, and D. F. Towsley. Mea-
surement and Modeling of Temporal Dependence in Packet
Loss. In IEEE INFOCOM, Mar 1999.

[19] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to
Model an Internetwork. In IEEE INFOCOM, Apr 1996.

[20] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the
Constancy of Internet Path Properties. In ACM SIGCOMM
Internet Measurement Workshop, Nov 2001.

Bhaskaran Raman received his B. Tech in Computer Science and Engi-
neering from Indian Institute of Technology, Madras in May 1997. He re-
ceived his M.S. in Computer Science from University of California, Berke-
ley, where he is currently a Ph.D. candidate. His research interests are in
communication networks, large-scale Internet-based systems, and Internet
middleware services.

Randy H. Katz received his undergraduate degree from Cornell Univer-
sity, and his M.S. and Ph.D. degrees from the University of California,
Berkeley. He joined the faculty at Berkeley in 1983, where he is now the
United Microelectronics Corporation Distinguished Professor in Electrical
Engineering and Computer Science. He is a Fellow of the ACM and the
IEEE, and a member of the National Academy of Engineering. His current
research interests are Internet Services Architecture, Mobile Internet, and
the technologies underlying the convergence of telecommunications and
packet networks.


