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Abstract—We propose a novel architecture for providing band-
width allocation and reservation that is both scalable and robust.
Scalability is achieved by not requiring routers to maintain per-
flow state on either the data or control planes. To achieve ro-
bustness, we develop two key techniques. First, we use an ad-
mission control mechanism based on lightweight certificates and
random sampling to prevent malicious users from claiming reser-
vations that were never allocated to them. Second, we use a re-
cursive monitoring algorithm to detect misbehaving flows that ex-
ceed their reservations. We randomly divide the traffic into large
aggregates, and then compare the data arrival rate of each aggre-
gate to its reservation. If an aggregate misbehaves, i.e., its arrival
rate is greater than its reservation, we split and monitor that ag-
gregate recursively until we detect the misbehaving flow(s). These
misbehaving flows are then policed separately. We conduct exten-
sive simulations to evaluate our solutions. The results show that
the proposed solution is very effective in protecting well-behaved
flows when the fraction of misbehaving flows is limited.

I. INTRODUCTION

The best-effort service model prevalent in the Internet allows
routers to be stateless. However, as the Internet evolves into
a commercial communications infrastructure, there is an in-
creasing need for providing more sophisticated services such
as bandwidth and delay guarantees. During the last decade
a plethora of solutions have been developed to provide bet-
ter services than best-effort. At one end, Integrated Services
(IntServ) [6] are able to provide very powerful and flexible ser-
vices. However, this comes at the cost of complexity. IntServ
assumes a network architecture in which every router maintains
per-flow state.

To alleviate the scalability concerns of IntServ, two new ar-
chitectures have been proposed recently: Differentiated Ser-
vices (DiffServ) [10] and Stateless Core (SCORE) [12][14].
These architectures differentiate between the edge and core
routers in a trusted network domain, and achieve scalability by
not requiring core routers to maintain any per-flow state, and
by keeping per-flow state only at the edge routers. The rea-
soning behind this is that, in general, each edge router handles
a smaller number of flows than a core router. However it is
likely that the border routers routers carrying traffic between
two large ISPs would have to handle a large number of flows
and maintain per-flow state for all of them, since these routers
lie on a trust boundary, and therefore will be required to func-
tion as edge routers. In addition, edge-based solutions are not
robust since a single malicious or mis-configured edge router
could potentially impact the whole domain.

Measurement-based admission control is another proposed
approach to providing real-time services in the Internet [1]. In
these designs, routers estimate the aggregate arrival traffic and
make admission control decisions based on this estimate. These
solutions are highly scalable, as routers do not need to maintain
any per-flow state on both the data or control planes. Unfortu-
nately, these solutions are not very robust. They offer little pro-
tection against malicious users that exceed their reservations, or
that send traffic without making any reservation. Such misbe-
havior can easily compromise the quality of service of all users
that share the same routers.

Thus, existing solutions to provide real-time services in the
Internet suffer from scalability or robustness limitations. In this
paper, we propose a novel solution that is both scalable and
robust. In the absence of malicious users, our solution offers
a service similar to the Premium Service [3] proposed in the
context of DiffServ. In the presence of malicious users, our
solution aims to protect well-behaved flows, by identifying and
punishing individual misbehaving flows.

We achieve scalability by not requiring routers to maintain
any per-flow state, even though our goal is to ensure that in-
dividual flows do not exceed their reservations. On the data
plane, routers maintain a single queue for reserved traffic. On
the control plane, routers maintain only the total reservation,
which is used to perform admission control. To maintain an ac-
curate estimate of the total reservation, end-hosts are required
to periodically refresh their reservations.

While the solution described above is scalable, it is not ro-
bust. A malicious user or a mis-configured end-host that sends
more traffic than its reservation permits can easily compromise
the service of other users. Similarly, a malicious user that sends
more/fewer refresh messages on the control plane than she is
supposed to can affect the accuracy with which routers com-
pute their total reservation.

In this paper, we introduce two key techniques toward realiz-
ing a robust and scalable QoS architecture. The first technique
is the use of lightweight certificates (issued by routers) on the
control plane. In conjunction with a soft state based control
plane, certificates provide scalability by not requiring routers to
maintain information about every individual flow. The strictly
one-way nature of certificates along with the use of random
sampling of refreshes achieves robustness.

The second technique we introduce is a stateless1 recursive

1We use the adjective “stateless” to refer to a solution which does not main-
tain state about every individual flow.



monitoring scheme for the data-plane that detects flows ex-
ceeding their reservations. This scheme works by dividing the
traffic into large aggregates, and then estimating the arrival rate
and the reservation of each aggregate. If an aggregate misbe-
haves i.e., its arrival rate is greater than its reservation, it is split
and recursively monitored until the misbehaving flows are iden-
tified. We explore the parameter space of this algorithm in our
proposed architecture and contrast it with a well known state-
less solution - random sampling [4][15]. Our solution does not
require routers to coordinate with each other; therefore a mis-
configured router cannot adversely affect another router’s be-
havior.

The rest of the paper is organized as follows. Section II pro-
vides the reader with background on QoS architectures. Sec-
tion III defines our goals, service model and assumptions. Sec-
tion IV describes our proposed control plane mechanism and
Section V describes the data plane mechanisms. Section VI
discusses additional issues and optimizations in our solutions.
Section VII presents simulation results and their implications.
Section VIII concludes, and outlines future work.

II. BACKGROUND AND RELATED WORK

The IETF has proposed two major architectures for provid-
ing QoS in the Internet - Integrated Services (or IntServ) [6],
and Differentiated Services (or DiffServ) [10]. IntServ pro-
vides strong service guarantees in terms of delay and bandwidth
[11][16]. Control plane signaling (admission requests etc.) is
done on a per-flow basis, and maintenance of per-flow reser-
vation state at all routers is required. On the data plane, each
router needs to perform per-flow management and maintain per-
flow state for processing of data packets. Maintenance of large
amounts of state prevents scalability of the network (in terms
of the number of flows). In addition, robustness problems arise
due to the difficulty of maintaining distributed replicated state
in a consistent manner [7].

DiffServ distinguishes between edge and core routers. Edge
routers are required to maintain per-flow state and process pack-
ets on a per-flow basis. However, core routers maintain state
only at a coarse granularity and process packets based on Per-
Hop-Behaviors (PHBs) corresponding to a field carried in the
packet header, which is set by the edge routers. Thus, the data
plane of the network core is scalable (in terms of number of
flows). However the service provided is weaker, e.g. Assured
Service and Premium Service [10].

In DiffServ, in order to address the issue of admission control
(the control plane), the main proposal is to use a bandwidth bro-
ker, which acts as a centralized repository of information about
the topology and the state of the network. Scalability may be
achieved by either distributing or replicating the broker. This
raises issues of fragmentation of resources and consistency of
replicated information. Also, this method is appropriate only
for long-lived flows with relatively rare flow setup and tear-
down operations.

A third architecture [12][14] relies on Dynamic Packet State
and provides stronger service guarantees than DiffServ, while
maintaining per-flow state only at the edge routers. The edge
routers encode the flow state into the packets themselves. This
state decides the packet-processing behavior at core routers,
which also modify this state.

The data plane algorithm proposed in this paper requires the
maintenance of only aggregate state in the network. In our pro-
posed algorithm, flows are randomly aggregated and such ag-
gregate flows are policed in order to restrict the bandwidth of
misbehaving flows without maintaining per-flow state. Aggre-
gation techniques similar to the ones we use have been used
earlier for use in congestion control algorithms. In particular,
in the Stochastic Fair Blue [8] scheme, the authors use such
a technique in order to rate-limit flows that do not respond to
congestion signals given by the network.

A simple stateless detection technique that has been proposed
in research literature is random sampling [4][15]. We contend
that the recursive monitoring technique proposed in this paper
can perform better than random sampling in many scenarios,
and contrast the two algorithms.

III. SERVICE MODEL, GOALS AND ASSUMPTIONS

The solution proposed in this paper aims to provide “soft”
bandwidth guarantees on a per-flow basis. A user can ask for
a peak bandwidth allocation by sending a reservation request
message. Once the reservation is granted, the user can send
traffic at a rate no greater than the reserved bandwidth. In ad-
dition, for the entire duration of the reservation, the user has to
periodically refresh the reservation. While we consider only the
peak bandwidth allocation model in this paper, more sophisti-
cated services such as the ones based on average-bandwidth or
token-bucket specifications are possible. We intend to explore
such services in the future.

The following are the important goals of our solution:
• Service: A flow that refreshes its reservation and does not

exceed its allocated bandwidth, should experience a very
low drop rate.

• Robustness: Routers should identify and isolate misbe-
having flows in a timely fashion. The goal is to minimize
the impact of misbehaving flows on well-behaved flows.

• Scalability: Routers should not be required to maintain
per-flow state on either the data or control planes.

• Deployability: The solution should be incrementally de-
ployable. Each router should operate independent of other
routers and should make no assumptions about the neigh-
bor routers implementing the same solutions.

In this paper we make two assumptions: (1) A flow is defined
by the fields in the IP header. Without loss of generality, in this
paper, we identify a flow using the IP source and destination
addresses. (2) Routers can handle at least two types of traf-
fic: best-effort, and priority traffic (for which our solutions are
used). This is done by either using a Weighted-Fair Queuing
scheduler [2], or a simple priority queue scheduler. We assume



a priority bit in the packet header to differentiate between the
priority and best effort packets. Finally, we make two points.
First, the main goal on the control plane is to effectively pro-
tect the well-behaved flows, and not to achieve high resource
utilization or low blocking probability which are important but
secondary goals. Second, our solution does not provide abso-
lute bandwidth or delay guarantees. This is because the detec-
tion of misbehaving flows is not instantaneous and it is possi-
ble for some well-behaved flows to experience significant drop
rates.

IV. CONTROL PLANE

The main function of the control plane is to perform admis-
sion control. The challenge is to maintain accurate informa-
tion about the total amount of reservation without maintaining
per-flow state, in the presence of packet losses, delays and ma-
licious flows that do not adhere to the signaling protocol. A
secondary goal is to allow the data plane to compute the reser-
vation of a given set of flows, as will be discussed in Section
V.

A. Admission Control

We first discuss a simple signaling protocol that is able to
handle control message delays and partial reservation failures.
We later extend this signaling protocol to handle flows that mis-
behave on the control plane.

To perform bandwidth admission control, each router main-
tains the total amount of bandwidth reserved so far on an outgo-
ing link, A. Upon receiving a reservation request for bandwidth
r, the router simply checks whether A + r ≤ C, where C is the
link capacity. If this is true, the router accepts the reservation
and updates A to be A+r. If all routers along the path admit the
reservation, the reservation is granted, and the destination sends
a reply to the source. Upon receiving this reply, the source can
start sending data packets. Thus the latency incurred by the
admission control process is one RTT.

The challenge is to maintain an accurate value of A in the
face of partial admission failures, message losses and flow ter-
mination, without maintaining per-flow state. To address this
challenge we use a soft-state approach similar to the one pro-
posed in [12]. Each source that is granted a reservation is re-
quired to send periodic refresh messages as long as it intends
to maintain the reservation. The interval between two succes-
sive refresh messages, denoted Tref , is fixed and known by all
routers that implement our solution. Each refresh message con-
tains the bandwidth reserved by the flow. The router can then
compute the aggregate reservation on the output link by simply
adding the values carried in all the refresh messages received
during a period Tref . Since A is estimated based only on the
control messages received during the most recent period, the
scheme is robust to losses and partial reservation failures be-
cause inaccuracies do not build up over time.

A potential problem with the above solution is that consecu-
tive refreshes of a flow can arrive more than a period Tref apart

due to delay jitter. This may cause the control plane to “miss”
the flow when it computes the aggregate reservation. One way
to alleviate this problem is to compute the aggregate reservation
over a larger period of time. We call such period a router period
and denote it by Trouter. For simplicity, we choose Trouter to
be a multiple of Tref , that is, Trouter = nref ∗ Tref . We also
assume that the maximum jitter does not exceed Tref , so that
at most 1 refresh is “missed”. We then overestimate the aggre-
gate reservation by a factor f , to account for the “missed” re-
freshes. The computation of f is presented in the longer version
of the paper [13]. Such overprovisioning can also be employed
to account for refresh message losses, if the loss probability is
known.

Further, when a router receives (and accepts) a reservation
request for bandwidth r in the middle of a router period, (at
time d from the beginning of the router period), then the router
increments its total reservation estimate by r × dd/Trefe, not
just by r.

B. Control Plane Misbehavior

The reservation estimation algorithm presented above as-
sumes that all sources obey the control plane protocol. In this
paper, we focus on the following three ways in which a source
can misbehave on the control plane: (1) Sending refresh mes-
sages without having been admitted. (2) Stop sending periodic
refreshes and resume sending them later without undergoing
admission control again. (3) Sending more than nref refresh
messages in a router period.

Scenario (3) is addressed in Section IV-C. Scenarios (1) and
(2) can result in resource under-provisioning, which can com-
promise the service of well-behaved flows. Note that the stop-
page of refreshes in scenario (2) is equivalent to flow termina-
tion as far as the router’s control plane is concerned. Therefore
when the flow resumes sending refreshes, its refreshes will cor-
respond to non-existent reservations. How does the router de-
tect that without per-flow state? We now present our solution to
address scenarios (1) and (2).

The key idea is to use lightweight certificates generated by
routers in order to allow the routers to verify that a refresh mes-
sage corresponds to a flow which was admitted earlier. Each
router along the path computes and attaches a certificate to the
admission request message if the admission succeeds. The re-
quest message collects the certificates from all routers along
the path, and the destination sends them back to the source in a
response message. Subsequently, the source sends refresh mes-
sages containing all the certificates that it had received, in the
same order that they were received.

The certificate issued by a router is a one-way hash of the
requested reservation amount, the flow identifier, and a router-
specific key (see Fig.1). Each router on the path (which im-
plements our solution) needs to know only its own key value,
and how to access the certificate issued by it (earlier) from the
control packet payload. We refer to the fields in which these
certificates are stored, in the refresh packet, as C-Fields.



Whenever a router receives a refresh message, the router re-
computes a certificate C1 using the packet fields and its key. It
then retrieves the certificate C2, which was issued by it during
admission control, from the appropriate C-Field in the refresh
packet. If C1 and C2 are identical the router is able to conclude
that (a) the refresh indeed corresponds to an earlier admitted
flow, and (b) the reservation amount specified is the same as
requested during admission time. In other words the certificate
is “valid”. Therefore the router accepts the refresh i.e., uses the
specified reservation amount to update A.

As an optimization, the refresh message also contains an Off-
set field which indicates how many routers (which implement
our solution) the message has traversed. This field is incre-
mented every time the message traverses a router, and can be
used by routers to efficiently access their certificate.

This solution addresses scenario (1). However, a source that
was granted a reservation and stopped sending refreshes and
data (and was thus inferred to have terminated), can use the cer-
tificates at a later time without getting readmitted, which would
defeat our scheme. To address this problem, routers change
their keys, and therefore the certificates for each flow, during
every refresh period (Tref ). The certificates in the arriving re-
fresh packet are replaced by the new certificates. The refresh
packet reaches the destination which sends back the payload to
the source. Thus routers can convey their new certificates to the
sources. Sources are expected to use the new certificates in the
next period. Thus, if a source stops sending refreshes it will
stop receiving the new certificates. If it starts sending refreshes
later, they will not contain valid certificates. There remains the
possibility of lost or delayed refreshes causing well-behaved
flows to not receive the new certificates. We address this issue
in Section VI.

The control plane operations described here are shown as
pseudo-code in Fig.2. The function isValidCert() checks if the
certificate in the packet’s appropriate C-Field matches the cer-
tificate computed from the current key and the header fields. If
it is valid and is not an “extra refresh” (explained in Section
IV-C), the router updates its estimate of total reservation, in
updateResvEstimate(). If the certificate is not valid, then the
refresh message is treated simply as a new admission request
message (in admissionCheck()).

C. Detection of Extra Refreshes

A flow F may misbehave by sending more than one refresh
message every Tref seconds. In particular, if F sends xref > 1
refresh messages every Tref seconds , it can “inflate” its reser-
vation by a factor xref , without undergoing admission control
for that amount. This is because the aggregate reservation es-
timation algorithm will add up the reservations carried by all
refresh messages during a Tref period. This can prevent other
flows from being admitted! In addition, the flow could send
xref times the amount of data it was admitted for, and the data
plane will not detect this occurrence, since the flow does not ac-
tually exceed its (inflated) reservation. Therefore, the challenge

is to detect such “extra” refreshes without per-flow state. We
use random sampling to address this problem.
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Fig. 1. Control Packet Format

Random sampling is a well known method to monitor flows
that has been proposed earlier [4][15]. The basic algorithm is
to choose a packet randomly and monitor the flow to which the
packet belongs to. We now describe a random sampling scheme
to detect flows that send extra refreshes.

If exactly one flow can be monitored at any given time, this
flow could be chosen to be the originator of a refresh randomly
chosen (i.e., sampled) from the stream of refreshes arriving at
the router. Note that the probability of choosing a particular
flow increases linearly with the number of refreshes the flow
sends in a period Tref . Also, flows that misbehave more (and
waste more resources) are likely to be detected before flows
that misbehave less. Once a flow is chosen, it is monitored for a
period Tmon and then classified as well-behaved or misbehav-
ing. Then it is replaced by the flow corresponding to another
randomly sampled refresh, and so on. Tmon can be equal to
Tref : however there is a risk that 2 successive refreshes of a
well-behaved flow arrive sooner than Tref , due to network jit-
ter effects. Therefore Tmon could be chosen to be a multiple of
Tref in order to use a longer observation period.

We now make two generalizations to this method. First,
when the monitoring of a flow is finished, another flow (corre-
sponding to an arriving refresh) can be chosen to be monitored
with a probability of q (as opposed to probability 1). Second, if
B flows can be monitored simultaneously (B > 1), we can first
use a hash function for mapping flow identifiers (of arriving re-

processControlPacket(Packet p)
fid = getfid(p);
cert = getCertificate(p);
//processing a valid refresh
if isValidCert(cert)

if isExtraRefresh(fid)
//downgrade/contain the flow
barFlow(fid);

else
updateResvEstimate(p);
updateDataPlane(p);

else //admission request
if admissionCheck(p)
attachCertificate(p);

else
denyAdmission(p);

Fig. 2. Pseudo-code: pro-
cessing control packets

isExtraRefresh(Packet p)
fid = getfid(p);
hashval = hash(fid);
sample = sample[hashval];
if isSampleEmpty(sample) or
finishedPolicing(sample);
//replace with probability q
replaceSample(sample, fid, q);

if sampleHasFid(sample, fid)
//increment the refresh count
updateSample(sample, p);
if isMisbehaving(sample)

//downgrade/contain the flow
barFlow(fid);

Fig. 3. Pseudo-code: Ran-
dom Sampling



freshes) onto an index in the range [1..B], and then choose a
flow to be monitored only if no other flow mapping onto that
same index is being currently monitored. The complete algo-
rithm is depicted in Fig.3, in the routine for isExtraRefresh().
This is the control plane function which determines, upon re-
ceiving a refresh, whether that flow is sending more refreshes
than it should.

We observe at this point that this method can be adapted for
use on the data plane, as an alternative to our proposed recursive
monitoring algorithm, to detect flows which use more band-
width than they reserved, by sampling data packets instead of
refresh packets.
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The shaded boxes represent monitored A−flows.
The dark lines represent the A−tree.

Fig. 4. Illustration of an A-Tree

V. DATA PLANE

The goal of the data plane is to ensure that each flow receives
its reserved bandwidth. The challenge is to achieve this in the
presence of misbehaving flows that exceed their reservations,
without maintaining per-flow state.

To address this challenge, we employ a monitoring mecha-
nism for detecting misbehaving flows. Once detected, a mis-
behaving flow is contained or downgraded. A simple approach
to detect misbehaving flows is to monitor a (bounded-size) set
of flows: if a monitored flow’s data rate exceeds its reservation,
the flow is assumed to misbehave. The key question is: how
do we select the set of flows to be monitored? One possible
solution is to select these flows randomly (as in Section IV and
[15]). However, we propose a more elaborate scheme, called re-
cursive monitoring (abbreviated to R-Mon), that (as shown by
the simulation results in Section VII) is able to out-perform the
random sampling scheme in many scenarios. We now describe
our R-Mon algorithm.

A. R-Mon Algorithm Overview

The basic idea of R-Mon is to randomly divide the total set of
flows into large aggregates and monitor the aggregates. When
an aggregate misbehaves, it is recursively split into smaller ag-
gregates which are monitored similarly. The recursion termi-
nates when the monitored aggregate consists of a single flow.
Section V-B describes how this algorithm works when the total
number of aggregates that can be simultaneously monitored is
bounded. This bound represents the space complexity of our
algorithm.

An important advantage of our algorithm is that it gives a
deterministic bound on the time it takes to catch a misbehav-
ing flow assuming that the misbehavior is significant enough
to cause losses to well-behaved flows. On the other hand, our
algorithm cannot catch a flow faster than the time it takes to
expand a misbehaving aggregate into its constituent flows. In
the worst case, this time is proportional to Ω(log m), where m
is the number of flows in the aggregate. In contrast, the ran-
dom sampling scheme can select and catch the misbehaving
flow right away, but it cannot provide a deterministic bound on
how long it takes to catch a flow. The trade-offs between these
two algorithms are explored experimentally in Section VII and
analytically in the longer version of the paper [13].

B. The A-Tree

We now describe the data structures used to monitor and ex-
pand misbehaving aggregates. Consider a router which intends
to monitor the traffic on a single link. Let an A-flow (short for
“Aggregate-flow”) be an arbitrary subset of flows traversing that
link. Our scheme is based on a simple observation: if the traffic
of an A-flow exceeds the total reservation allocated to all flows
in the A-flow, then at least one of these flows is misbehaving.

It is useful to think of A-flows as nodes in a tree (see Fig.4).
Consider a complete tree whose root represents the A-flow con-
sisting of all flows. The leaves of this tree represent A-flows
each containing a single flow traversing the link. Each internal
node represents an A-flow which also has a set of “children” A-
flows which are pairwise disjoint and whose union is the parent
A-flow. The number of nodes of this complete tree that can be
maintained at any given time is constrained by the amount of
state the router can maintain. Let B be the maximum number
of A-flows that can be simultaneously monitored by the router.
The sub-tree which has as its leaves the A-flows that are cur-
rently being monitored is called the A-tree.

The central idea of R-Mon is to recursively descend down
those branches of the A-tree that lead to misbehaving flows.
The pseudo-code for this is shown in Fig.5. To implement this
scheme, the router maintains two data structures:
• monTbl, which maintains the set of A-flows and flows

that are currently being monitored. The size of this set
is bounded by B.

• alertList, which is a priority queue that maintains the set
of A-flows that are misbehaving. These represent the set
of nodes in the A-Tree that need to be expanded/contained
in the future. To decide which one of these A-flows to ex-
pand first (i.e., a priority function), we use a simple heuris-
tic: given two A-flows at different levels, we first expand
the A-flow which has a higher depth in the A-Tree; given
two A-flows at the same level we expand the one that mis-
behaves by a larger amount.

In the absence of misbehaving flows, the algorithm tries to
evenly extend the complete A-Tree as deep as allowed by the
bound B, i.e., up to a depth logB

k , where k is the degree of
the A-Tree. When one of the A-flows misbehaves, its children



processDataPacket(Packet p)
fid = getFlowId(p); //compute flow ID from p’s header
updateAFlows(monTbl, fid, p); //update resource consumption

/* this is run every Tref seconds */
periodicSweep()

//create priority list of alerts
alertList = sweepAndCreateAlertList(monTbl);
while notEmpty(alertList)

aflow = removeTopPriorityAFlow(alertList);
if isSingleFlow(aflow) //A-flow is a single flow

barFlow(aflow.flowId); //contain/downgrade flow
else //remove lowest priority A-flows

makeSpaceForExpansion(monTbl, aflow);
insertChildAFlows(monTbl, aflow); //split A-flow

removeFromTable(monTbl, aflow);

Fig. 5. Pseudo-code: processing data packets.

are added to monTbl. In order to add these children, we re-
move all A-flows which have been monitored and have not been
observed to be misbehaving. If space constraints remain, we
might need to remove A-flows (of lower priority) from monTbl.
Since the removal of A-flows could result in some flows not be-
longing to any monitored A-flow, in practice, we always moni-
tor every A-flow at depth one (e.g., A1 and A2 in Fig.4).

We now examine the issue of determining the aggregate
reservation of each A-flow in monTbl. At this point we make an
assumption that the control plane informs the data plane of the
arrival of these refresh messages; this is the only information
that has to be exchanged between the control and data planes.
The data plane uses the period Tref to count the number of
refresh messages2 received by each monitored A-flow and de-
termines the aggregate reservation of that A-flow. At the end
of each such period, the router does the following for each A-
flow in monTbl: compare the total traffic sent in that period by
that A-flow with its aggregate reservation (bandwidth); if the
A-flow is found to be misbehaving, then either its children are
added to monTbl, or if the A-flow consists of a single flow, that
flow is downgraded or contained.

Fig.5 shows the pseudo-code for the data plane operations.
Each data packet is handled by processDataPacket() which
simply updates the resource consumption of every A-flow to
which the packet’s flow belongs to. Every Tref seconds, pe-
riodicSweep() is run, which removes well-behaved A-flows,
creates the alertList, and either downgrades/contains/bars
(barFlow()) or splits and expands (insertChildAFlows()) the
A-flows in the alertList.

C. Discussion

The data plane mechanism makes the assumption that ex-
actly one refresh per flow is received in each period Tref . How-
ever, in a real network, refreshes may arrive earlier, be delayed
or lost. In the case when the number of refreshes received is
smaller than the number of flows (in an A-flow), the A-flow
may be (wrongly) classified as misbehaving. There are at least

2Recall that each flow is supposed to periodically send refresh messages with
period Tref .

two solutions to this problem. The first solution is to compute
the reservation of an A-flow by taking into account refresh mes-
sage delays and losses. The second solution is to compute the
reservation without taking delays and losses into account. Note
that in the latter case, if the A-flow is a single flow, we know
that it is supposed to send 1 refresh in the last Tref seconds.
If that refresh doesn’t arrive, we know for certain that we have
not received accurate reservation information for that flow, and
will not bar that flow (we can choose to monitor it for another
period). Therefore there is no danger of mis-classifying a well-
behaved flow as a misbehaving flow. The only possible penalty
is inefficiency, not correctness. We have chosen the second
method for the simulations in this paper.

The algorithm described allows (but does not require) the
containment of A-flows while they are being monitored. In this
way, we can bound the total traffic sent by a flow by the reserva-
tion of the deepest A-flow in monTbl which contains that flow.
In our implementation, we chose to not contain A-flows. This
decision is motivated by the fact that containing an A-flow may
adversely affect the well-behaved flows within that A-flow even
when there are enough resources in the system to handle all the
flows.

One remaining question is how to map flows to A-flows. One
simple way to achieve this is to use a subset of bits from the flow
identifier3 to determine the A-flow to which the flow belongs to.
For instance, a 32-bit flow identifier could be used to construct
an A-tree of maximum depth 16 and degree 4 by associating
2-bit masks with each level. In particular, at the first level of
the A-Tree there can be at most four A-flows, each of which
consists of all flows with a prefix of 00, 01, 10 or 11.

Once an individual flow is classified as misbehaving, we
assume a containment procedure that either downgrades the
flow’s traffic to best-effort or shapes it to its reserved bandwidth
(referred to as barFlow() in Fig.5). One way to achieve this is
by maintaining per-flow state (either at each router, or only at
the edge routers of a domain) for each flow that has been de-
tected to be misbehaving. This state could be timed out in or-
der to allow for flows which resume correct behavior. We note
that this containment procedure imposes a lower limit on the
amount of state required at the routers; our solutions are inher-
ently suitable only for scenarios in which the number of mis-
behaving flows is small (though they might misbehave by large
amounts). If we were to follow the approach outlined above, it
would be better to shape the detected flows to their reservations
than to downgrade them, in order to account for the possibility
of flows wrongly detected to be misbehaving. While the de-
tailed design of the flow containment mechanism is beyond the
scope of this paper, in Section VI we describe an alternative
stateless scheme to implement flow containment.

One important point to note is that if an A-flow is well-
behaved, this does not necessarily mean that all flows in that
A-flow are well-behaved. A misbehaving flow can “hide” be-

3The flow identifier can be computed by concatenating or hashing the flow’s
source and destination IP addresses and eventually port numbers.



hind other flows (in the same A-flow) that use less bandwidth
than they reserve. This is acceptable since our main goal is to
protect well-behaved flows and not catch all misbehaving flows.

D. An Analytical Result

We now illustrate the trade-off between the state maintained
and the time it takes to detect misbehaving flows, by stating a
theorem for a static system. This theorem is proved, along with
other results, in [13]. The time taken to detect all the misbehav-
ing flows is linear in M , for small values of M , the number of
misbehaving flows, and sub-linear for larger values of M . Also,
the time taken to detect all the misbehaving flows is inversely
proportional to B.

Theorem 1: Assume that there are M misbehaving flows out of a total of
n flows in a static system at time 0, and each misbehaving flow causes every
A-flow to which it belongs to misbehave. Let B be the maximum number of
A-flows that can be monitored concurrently (with Bs A-flows at the top of the
tree being maintained always; Bd = B − Bs), and let k be the degree of the
A-tree. Then, the time to detect and contain the M misbehaving flows using an
optimal recursive monitoring scheme is bounded by

Tref · logk

n

Bs

if M ≤ Bd/k, and (1)

Tref ·

(

logk

Bd

Bs

+
Mk

Bd

·

(

logk

n

M
+

1

k − 1

))

otherwise. (2)

VI. OTHER ISSUES

In this section we examine certain important issues and pos-
sible optimizations; though these are not present in our simula-
tion scenarios, they are required for a practical deployment of
our solutions.

Route changes: If a flow’s route changes, some routers on
the new path will no longer find a valid certificate in the refresh.
Therefore, they will interpret this as an admission request. This
is acceptable behavior because, once the path changes, it is nec-
essary to allocate network resources on the new path. Mean-
while, the flow’s reservation with routers on the old path which
are not in the new path, or not in the same position in the new
path, will be automatically timed out, due to the soft state reser-
vation approach.

Sources of Overhead: Tref must be chosen so that the band-
width taken by refresh messages is low compared to the data
rate. However, there is a trade-off between Tref and the QoS re-
ceived by well-behaved flows (since misbehavior detection will
take longer with larger Tref ). Assuming an C-Field size of 16
bytes (CSize in Fig.1), a refresh of size 500 bytes would suffice
since most Internet paths contain less than 30 hops. Consider-
ing an example scenario from our simulations, an 80 Kbps data
rate flow with a refresh period of 5 seconds has a bandwidth
overhead of 2%. Another source of overhead is the process-
ing of each control and data packet by routers.These operations
are likely to be fast since they are all based on use hash op-
erations (including certificate creation/verification). However,
this overhead needs to be investigated in an implementation,
particularly since a high certificate processing overhead would
make the router vulnerable to Denial of Service attacks based

on flooding the router with packets containing invalid certifi-
cates.

Deployment Issues: Our solution does not require any in-
formation exchange among routers. The only coordination re-
quired is to fix the value of Tref to a well-known value. In
addition, even partially deploying our solution to the known
congested routers would significantly improve the level of ser-
vice in the network (see Sec. VII). Thus our solution can be
incrementally deployed.

Message Losses: The possibility of message losses exists in
real networks. If a refresh message is lost, the system would
detect a well-behaved flow as misbehaving on the data plane.
This problem may be overcome by over-provisioning the data
plane based on the expected loss rate. In addition, referring to
Fig.2, a flow whose refresh is lost is forced to undergo admis-
sion control. A possibility for optimization exists here: if the
refresh does not cause over-reservation, the router can attach
a new certificate to the refresh packet, and actually refresh the
reservation, even if the refresh packet’s certificate is not valid.
In order to prevent a misbehaving end-host from taking advan-
tage of this, such action may be “recorded” in the certificates.
A flow with several late “recorded” refreshes could be deemed
to be misbehaving.

Stateless Barring of Flows: The use of certificates also al-
lows us to avoid maintaining state for flows that have already
been classified as misbehaving. The certificates returned to
such flows could be computed using a different router key than
the one used for well-behaved flows. This solution requires that
each data packet carry such a certificate. A router can detect
whether a data packet belongs to a misbehaving or an well-
behaved flow by simply checking its certificate. If the packet
belongs to a misbehaving flow, the router can downgrade the
packet to the best-effort service. While such a solution can
completely eliminate the need of maintaining state for misbe-
having flows, there are two potential problems. First, per-data-
packet overhead increases now as a router needs to compute
certificates for every data packet (though the hashing operation
involved can be efficiently implemented). The second problem
is to find room in the packet header to carry the certificates.
Since the number of certificates is variable, one possible solu-
tion would be to use the IP option field. It is also possible to
allow detected flows to resume normal operation after a “pro-
bation period” by extending the certificates to contain the time
at which the flows were detected to be misbehaving.

VII. SIMULATIONS

In this section, we use ns-2 [17] simulations to evaluate our
solution. These simulations aim to demonstrate the ability of
our solution to: (1) protect well-behaved flows from misbehav-
ing flows (2) detect flows that consume more resources (band-
width) than they had reserved, and (3) detect flows that send
extra refresh messages.

In our evaluation we use three metrics: (1) Average loss rate
experienced by well-behaved flows, as a measure of the pro-
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tection offered by our scheme in the presence of misbehaving
flows. (2) Fraction of misbehaving flows detected, and (3) The
time taken to detect misbehaving flows.

We consider a peak bandwidth allocation service in which all
well-behaved flows request and send traffic at a reserved rate of
10 KBps. Each flow is modeled as a CBR source which sends
packets with the inter-departure times distributed uniformly be-
tween −20% and 20% of the average value. Flows have asso-
ciated random 32-bit identifiers. In the R-Mon scheme, flows
are mapped onto A-flows using randomly generated bit-masks
for each level. The value of Tref and Trouter is 5 seconds.
Data and control packets are of size 1500 and 500 bytes respec-
tively. For simplicity, we assume that once a misbehaving flow
is detected, the flow is barred. Unless otherwise specified, the
topology we consider is a single congested link governed by a
router at one end, which implements our solution.

A. Detecting Misbehaving Flows on the Data Path

We now evaluate the effectiveness of our detection algorithm
to catch flows that misbehave on the data path i.e., flows that
exceed their reservation. We consider two cases: (1) a static
scenario, where all flows arrive at the same time and are con-
tinuously backlogged, and (2) a dynamic scenario, where flows
arrive and depart on a continuous basis.

1) Static Scenario: We consider a single congested link tra-
versed by 1024 flows out of which M are misbehaving. We

assume that all flows are continuously backlogged, and that all
flows start transmitting at the same time. Fig.6 shows the mean
time it takes to catch all misbehaving flows for both the ran-
dom sampling scheme and the R-Mon scheme with degree 4. In
both cases we assume B = 48. The bandwidth of misbehaving
flows is 4 times the reserved bandwidth. The number of mis-
behaving flows M varies from 1 to 128. The graph also plots
the theoretical result for the R-Mon scheme using the result in
Theorem 1. As illustrated by the simulation results, when M is
small, the time it takes to catch all misbehaving flows is linear
in M . However, as M increases, the probability of an A-flow
having more than one misbehaving flow increases and the de-
pendence becomes sub-linear.

In general, the R-Mon scheme outperforms random sampling
when M is small. This is because random sampling selects the
flows to be monitored uniformly no matter whether they are
misbehaving or not. Thus, when M is small, random sampling
ends up monitoring mostly well-behaved flows. In contrast, R-
Mon splits only misbehaving A-flows, which results in a more
judicious use of the available buffer space.

2) Dynamic Scenario: We next evaluate the ability of our
solution to provide protection to well-behaved flows in a dy-
namic scenario. Flows arrive according to a Poison process
with a mean arrival rate of 4 per second. The duration of each
flow is drawn from a Pareto distribution with a shape parameter
of 1.5. These parameters ensure that the link is being traversed



Topology Avg. Drop Rate Droptail Drop
Rate

A-R-Mon 1.6% 23%
A-Sampling 1.79% 23%
B-R-Mon 0.052% 25.34%
B-Sampling 0.057% 25.34%
C-R-Mon 0.53% 24.28%
C-Sampling 0.27% 24.28%

A-R-Mon(5% overprovisioning) 0.016% 20%
A-Sampling(5% overprovisioning) 0.024% 20%

Fig. 13. Multiple Link Topology Results

by 1000 flows on average. The duration of each simulation is
6000 seconds of simulated time.

In evaluating the R-Mon scheme we vary three parame-
ters: (1) B, the maximum number of flows or A-Flows that
can be policed simultaneously, (2) fm, the fraction of arriv-
ing flows that are misbehaving, and (3) bwm, the ratio of the
rate at which misbehaving flows send data to their reserved
rates. Thus, a completely reserved link that is traversed by
M misbehaving flows will receive extra traffic at a rate of
M ∗ (bwm − 1) · 10 KBps. Note that the expected loss rate
caused by the misbehaving flows in the absence of our solution
would be ( 1

fm(bwm−1) + 1)−1. For instance, if 10% of flows
misbehave and each of them sends traffic at a rate 4 times the
reserved rate (i.e., bwm = 4), the resulting loss rate is 23%! In
the following discussion, bwm is 4 unless otherwise specified.

First, we investigate the relationship between the degree k of
the A-tree and B. Fig.8 shows the loss rate of well-behaved
flows for B = 32 and 48. These results suggest that the optimal
choice of the degree k in these cases is 4. This is consistent with
an analytical result derived in [13], which says that the optimal
degree is 4 (see Fig.7) when there are 1000 flows in the system.
Note that we use bit-masks to map flows onto A-flows; so the
degrees are powers of two. And the nearest such degree to the
the optimal point in the theoretical graph is 4.

We next investigate the relationship between B and fm.
Fig.9 plots the loss rate versus B for different values of fm.
Note that in this case, B = 48 represents the point of dimin-
ishing returns; once B exceeds 48, the decrease in the loss rate
is minimal. We obtain a similar analytical result in the longer
version of this paper [13]. Using the parameters of the sim-
ulation with this result, we obtain B to be around 24 which
is only half as much as 48. We believe that this is due to the
inefficiency of the R-Mon scheme that we used (the analytical
result gives the performance of an optimal algorithm). For com-
parison purposes, Fig.10 plots the loss rate experienced by the
well-behaved flows for the random sampling scheme. While
both algorithms are effective in reducing the loss rates, the R-
Mon scheme has the edge in most cases.

Finally, we investigate the impact of increasing the rate at
which misbehaving flows send data on the loss rate experienced
by well-behaved flows. Fig.11 plots the loss rate versus bwm.
When fm = 1 there is little increase in the loss rate as bwm

increases. This is because B is large enough to catch a mis-
behaving flow almost as soon as it arrives. However, when

fm = 10%, we see a linear increase in the loss rates with bwm.
This is to be expected since the R-Mon scheme is not very sen-
sitive to the amounts of data sent by misbehaving flows (more
specifically, if all misbehaving flows increase their sending rate
by the same factor, no appreciable difference will be seen in the
rate at which misbehaving flows are detected). The graph also
plots the corresponding loss rates on a drop-tail link with no
policing. This shows that our scheme represents a significant
improvement over a simple drop-tail queue. We also note that
in all the simulations reported here, no well-behaved flows were
wrongly classified as misbehaving.

B. Control Plane Misbehavior

We now consider flows that misbehave by sending more re-
fresh messages than specified by the signaling protocol. In par-
ticular, well-behaved flows send one refresh message and mis-
behaving flows send xref > 1 refresh messages every Tref

seconds. To stress our solution, we also assume that the misbe-
having flows send data at a rate which is xref times larger than
their reservation. This represents the maximum amount of data
the misbehaving flows can transmit without being caught on the
data plane.

On the data plane, misbehaving flows never exceed their (in-
flated) reservations. Therefore the loss rate experienced by the
well-behaved flows is negligible. The impact of the misbehav-
ing flows is that flows arriving into the system will be denied ad-
mission. Thus, to evaluate the efficacy of the detection scheme
on the control plane, we use the number of misbehaving flows
that are caught, as the main metric. In scenarios where the per-
centage of misbehaving flows is 10% and at least 48 flows can
be monitored, the control plane mechanism is able to detect
99% of the misbehaving flows.

Fig.12 plots the number of misbehaving flows in the system
in the presence and absence of policing on the control plane.
The percentage of misbehaving flows is 40%. The reason for
using such a large percentage is to better illustrate the robust-
ness of the control plane. As shown in Fig.12, the number of
misbehaving flows that are not caught is around 10% in steady
state. It is important to note that this result does not mean that
10% of the misbehaving flows are never caught; it only means
that on an average a misbehaving flow is caught one fourth into
its lifetime. In this simulation, we use B = 8, k = 4 and the
mean arrival rate of flows λ is 2.

C. Multiple Links

All results presented so far are for a simple network topology
involving a single congested link. Now, we show that our so-
lution is also robust and effective in the case of more complex
topologies. To illustrate this point, we use the three topologies
shown in Fig.14. In all simulations, the overall fraction of mis-
behaving flows arriving in the system is 10%. The congested
links are shown with solid lines. Each flow traverses one con-
gested link in topology A, two congested links in topology B,



and four congested links in topology C. Also, to illustrate the
incremental deployability of our solution, we assume that only
the congested routers implement flow monitoring and contain-
ment.

Fig.13 summarizes the results for each of the three topolo-
gies. We make several observations. First, even in the absence
of over-provisioning, i.e., when a router allocates 100% of its
capacity, the loss rate never exceeds 1.8%. The reason why our
solution performs better for topologies B and C is that misbe-
having flows are caught faster as they traverse multiple routers
implementing our solution; in general the time taken to detect
a misbehaving flow decreases with the number of routers on its
path that implement our solution. Second, adding a 5% over-
provisioning reduces the loss rate by almost two orders of mag-
nitude even in the case of Topology A. The over-provisioning
factor of 5% is computed based on the formula derived in [13].

Third, both random sampling and R-Mon schemes perform
similarly, with R-Mon performing marginally better in the case
of topologies A and B, and with random sampling performing
marginally better in the case of topology C. This is because
random sampling reaps full benefit when the number of routers
implementing our solution (n) on the flow’s path increases. In-
deed, with random sampling, the time to catch a flow is roughly
inversely proportional to n. In contrast, R-Mon is limited by
the fact that it has to walk down the A-Tree until it detects a
misbehaving flow.

Finally, these results illustrate the ability of our solution to
be incrementally deployed (as long as the bottleneck links per-
form admission control). This is because our solution does not
require any coordination among the routers in either performing
the admission control or in detecting the misbehaving flows.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a scalable and robust archi-
tecture for providing bandwidth allocation in the Internet. Our
solution does not require routers to maintain per-flow state on
either the data or control plane. The paper’s main contribution
is to propose two techniques for robustness against malicious
users on both the data plane and the control plane. For the
control plane we propose a lightweight certificate-based pro-
tocol that enables routers to detect users who try to evade ad-
mission control, deny service to well-behaved flows, or violate
the signaling protocol. For the data plane, we propose a re-
cursive monitoring algorithm that is able to detect misbehaving
flows that exceed their reservations, while maintaining minimal
state. The simulation results indicate that these mechanisms
maintain the quality of service (in this case, bandwidth) of the
flows which conform to their reservations, in the presence of
a significant, but limited, number of misbehaving flows. The
most important area of future work is to extend our solution to
accommodate bursty traffic sources and multicast.
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