
Dynamics of Simultaneous Overlay Network Routing

Mukund Seshadri and Randy H. Katz

Report No. UCB//CSD-03-1291

November 2003

Computer Science Division (EECS)
University of California
Berkeley, California 94720

This research was supported under grant number (NSF)EIA-0122599.

1

Dynamics of Simultaneous Overlay Network
Routing

Mukund Seshadri, Randy H. Katz
EECS Department, University of California, Berkeley

Email:
�
mukunds,randy � @cs.berkeley.edu

Abstract— Peer-to-peer and overlay networks allow
routing to be controlled at the application layer. Consider
several independent overlay flows, each with a set of
available overlay routes to send their data on. If they each
select the route with the most available bandwidth, i.e.,
they are “greedy”, a significant degree of instability could
result, leading to degraded performance. We investigate
this possibility, and a wide variety of factors that affect
routing performance, by simulations. We find that some
measure of “restraint” is crucial for obtaining acceptable
performance of route selection in such scenarios. Specifi-
cally, we investigate three forms of restraint - randomiza-
tion of route selection, utilizing an appropriate hysteresis
threshold when switching routes, and increasing the time
intervals between route-change considerations.

Our results indicate that randomization can significantly
reduce loss-rates (typically by half) - more importantly, it
is sufficient to utilize load information from a small subset
of overlay paths to obtain such results. This approach
would significantly reduce the path measurement overhead
imposed by applications. Secondly, we find that appropri-
ate values of the hysteresis threshold (�) can be heavily
dependent on the parameters of the system. Therefore we
propose that flows determine � dynamically; we suggest
and evaluate an algorithm based on multiplicative increase
and decrease of � for this purpose. This algorithm is found
to reduce loss rates of the basic greedy method by at least
half. Finally, we investigate the scenario when a subset of
unrestrained overlay flows (the “cheaters”) select the best
of all available routes, while the remainder use suitable
hysteresis thresholds or randomization.

I. INTRODUCTION

Peer-to-peer systems and overlay networks allow data
or queries to be routed through peers or overlay hosts
to the ultimate destination. Such systems often possess
a degree of freedom in choosing the overlay-level path.
This allows applications to control the performance of
their routes, and seek better routes or greater function-
ality than is available from the Internet. This approach
is convenient since it does not require changes in the IP
infrastructure. Several overlay networks and peer-to-peer
systems have been proposed which follow this approach.

Some examples are Gnutella [1] (a peer-to-peer overlay
for file-sharing), the Resilient Overlay Network [2] or
RON (which attempts to provide better connectivity than
BGP does), and End System Multicast (which attempts
to provide efficient multicast capability using only end-
hosts). In addition, proposed infrastructures like i3 [3]
would make it easier for end-hosts to control routing [4],
and testbeds like PlanetLab [5] increase the likelihood
that a large number of independently routed flows use
the same physical resources.

Typically, in a performance-oriented system, overlay-
level routing involves the measurement of all available
overlay paths; data is then sent along the path that is the
best, in terms of the metric of interest to the application.
While this “greedy” method works well for a single end-
host or decision maker, the effects of simultaneous route-
selection by several independent end-hosts have not been
adequately studied. Path characteristics can change dur-
ing, and after, the time required for measurement, due to
other end-hosts making route changes. If these end-hosts
do not explicitly communicate these decisions to each
other, it is likely that the path information is inaccurate at
the instant when the selection of the best route is made.
It is possible that this could lead to unstable behavior
and poor performance of route selection. For example,
several end-hosts could find a path to be unloaded, and
start sending traffic on that path; now this path would
become heavily loaded, and another path would seem
more desirable, and this “herd” behavior could continue
for the life-time of these end-hosts’ traffic flows.

Our goal in this paper is to investigate the occurrence
and extent of performance degradation when a large
number of end hosts independently perform route se-
lection. We performed simulations using a system model
of multiple arriving and departing flows, each with some
number of available paths from its source to the destina-
tion, having bottleneck physical links in common with
paths of other flows. Each of these flows periodically se-
lects a route using the �������
	�� method, i.e., it always
sends its data on the best path in terms of the metric
of interest, which is available bandwidth in our case.

2

We investigated the factors that affected performance,
and based on this, we made simple modifications to the
route-selection method, to improve its performance.

Unrestrained GREEDY route selection, as described
above, is very unstable, and performs very poorly, even
in a dynamic system where the routing decisions are
not synchronized. Obviously, the algorithm would benefit
from a hysteresis threshold (denoted by
), which
regulates the decision to make a route change. When
the optimal value of
 was employed, we observed
significant loss-rates (7% or more) only when the fol-
lowing conditions were true: (a) overlay paths belonging
to different flows shared physical bottleneck links to a
large extent, (b) the overlay traffic was a large fraction
(more than 25%) of the total traffic on the bottleneck
links, and (c) the overall bandwidth demand was as high
as the overall capacity.

The hysteresis threshold represents only one form of
restraint that can be applied to �����
��	�� selection. We
also explored two other forms of restraint: randomizing
route selection, and increasing the interval between route
change decisions (���). Introducing some randomness
into route-selection significantly reduced the loss-rates
observed (typically by half). Our most interesting obser-
vation here was that it is adequate to use measurements
of a small subset of all the available paths at any
given time to achieve the afore-mentioned improvements.
This would significantly reduce measurement traffic and
overhead associated with the overlay flows.

Next, we found that the optimal value of
 is very
sensitive to system parameters. Therefore we propose
that all the end-hosts in the system dynamically and
independently discover a suitable value for
 . We sug-
gest and evaluate a simple adaptive algorithm for this
purpose, based on multiplicative increase and decrease
of
 in response to the rate of route-changes performed.
We found that this algorithm yields very low loss rates
(less than 1%), and is often better than having a fixed
value of
 .

Finally, we investigate the performance gained by a
small number of “cheating” overlay flows which perform
unrestrained �������
	�� route selection when all the
remaining “good” flows adopt a restrained approach
(using the right hysteresis thresholds or randomization).
We find that the dynamic discovery algorithm for

performs the best in the context of the good flows, and
their performance does not suffer unless the cheating
flows approach half the total number of flows. The
cheating flows obtain performance benefits only when
they number less than 10% of total flows, and these
benefits are small.

The rest of the paper is organized as follows. In

Section II, we provide some background on overlay
networks, and describe related work. In Section III, we
describe the system model and simulation methodology
that we use to perform our investigations. Section IV
presents our results on greedy route selection, and its
dependence on
 and ��� . Section V presents our results
on randomized selection and dynamic discovery of
 .
Section VI presents our results on the performance
obtained by flows that “cheat”. Section VII concludes,
and outlines future work.

II. BACKGROUND

There have been several proposals for overlay network
protocols. In some cases, the goal was simply incremen-
tal deployment of new functionality in the Internet. The
MBone [6] was an early example of such an “overlay”.
Subsequent proposals implemented multicast and group
communication solely at end-hosts, at the application-
level. For example, End System Multicast [7] organizes
a group of end-hosts into a mesh and eventually into a
tree. The source (the tree root) sends packets which are
replicated and re-sent by the end-hosts corresponding to
the nodes of the tree. The tree topology is reactive to
properties like latency of the paths corresponding to tree
edges. These properties are inferred either by passive
measurement (if data is being sent on that path), or active
probing.

Overlay networks can also improve performance (e.g.,
in terms of effective bandwidth), or provide more reli-
able connectivity. The Resilient Overlay Network (RON)
project [2] provides reliable connectivity and quick re-
covery from path outages for a small group of overlay
nodes. Each node monitors the properties of its paths
to every other node of a RON by frequent probing or
passive monitoring. Upon detection of a path outage
between two nodes A and B (or a severe performance
drop), packets from A are sent to a third node C, which
forwards it to B. The choice of the node C is made
by selecting the best composite path (A-C-B) in terms
of the application’s metric of interest. The RON system
claims to be able to recover from path outages in around
20 seconds, while BGP recovery times can be several
minutes. Systems like RON and End System Multicast
which have a large number of overlay links (compared
to the number of nodes) do not scale to a large number
of nodes (around 100 in the case of RON, around 1000
in the case of End System Multicast).

Owing to the level of interest in overlay networks,
there has been a recent proposal [4] to provide generic
overlay functionality in the infrastructure. This pro-
posal advocates provision of infrastructure primitives
that would allow an end-host to control packet replication

3

and routing through the infrastructure. This makes it
easier to deploy an overlay network. The infrastructure
is built on a single large basic overlay network. Such
an infrastructure can lead to a large number of overlay
networks or flows sharing a limited number of physical
nodes (and consequently, the links between those nodes),
compared to the number of links in the entire Internet.
This would increase the chance of adverse interactions
between different overlay networks’ routing processes if
there was no explicit coordination.

Several network-wide measurement services ([4],[8])
have been proposed that eliminate the need for each
overlay network to perform measurements. Nevertheless,
the potential for instability in route selection still re-
mains, unless there is a single point of serialization or
reservation of routing decisions.

A. Related Work

The problem of simultaneous overlay networks or
flows is similar to that of server load-balancing. In [9],
Mitzenmacher observes instability in the presence of
stale load data, and advocates introducing randomization
into the server selection method. He observes that the
combination of random selection and a small amount of
load data is effective in reducing imbalances in server
load. This method is particularly attractive in our context,
since it involves a lower measurement overhead than
other methods. We study the performance of this method
(among others) in our problem domain as a possible
solution to observed problems. We note, however, that
there are several differences between our study and
Mitzenmacher’s. We study a greater parameter space and
use a work model of long-lived flows which make route-
change decisions periodically, based on a hysteresis
threshold on the improvement of path bandwidth; and we
aim for low loss-rates. On the other hand, Mitzenmacher
considered jobs with lifetimes much shorter than system
life, and was interested in the time to completion of these
jobs. There was no notion of job migration in his study.

Selfish routing has also been studied in the past.
Roughgarden et al. [10], and more recently, Qiu et
al. [11] study the effects of selfish route selection on
latency. To our knowledge, corresponding studies of the
effect on bandwidth, for overlay networks with dense
connectivity graphs, incorporating factors like cross-
traffic, hysteresis, and randomization, have not yet been
done.

Much work has been done on dynamic routing for net-
works [12], which typically involves a trade-off between
reactivity to load and link state changes, and stability.
While a certain lack of coordination does exist between

different different nodes of a network (due to transmis-
sion delays and out-of-date information), our problem is
different in that it involves no explicit communication
between the different decision-makers; these different
decision-makers observe and usually perturb the same
physical links.

III. SIMULATION MODEL

In this section we specify the model of overlay net-
work flows that we use for our simulations. Our aim is to
use a general model that captures the features important
to routing stability, rather than a particular protocol
with application-specific details. While our model is a
simplification of the real world, and the simulator is
not packet-level, it nevertheless provides valuable insight
into the relative effects of different factors and schemes
on routing performance.

We consider several independent flows, either from
different overlay networks, or from the same network,
but with no explicit coordination with other flows of
that network. The key aspect is that the flows do not
communicate (regarding their decisions) with each other
or with any central entity, and make their decisions
independently.

Each flow � seeks to send data traffic from a source
to a destination with a certain desired bandwidth. It has
several potential overlay-level paths that it can use for
this purpose. We denote the number of such paths by ��� .
Potential paths of different flows may share a bottleneck
physical link.

Each flow sends traffic on one of its potential paths,
called the current data path, and measures the remaining
potential paths. After each window of time ��� (the
routing window), the flow decides whether to continue
using the current data path or whether to use one of
the other potential paths for sending its data during the
next window. This decision is based on measurements
of the potential paths’ available bandwidth. If the period
between routing decisions is different from the measure-
ment period, we call the latter the measurement window
��� . A routing change from the current data path to a
potential data path will be made only if the improvement
in bandwidth is greater than some hysteresis threshold

 . We define the actual methods of route selection (and
evaluate them) in subsequent sections. In Sections IV
and V, all flows use the same route selection method.
This assumption is relaxed in Section VI.

Flows arrive and depart from the system with inter-
arrival times and lifetimes drawn uniformly at random
from a specified interval. We only consider flows with
lifetimes much larger than the routing window; it does
not make sense for short-lived flows to make route

4

changes, because they would depart before reaping the
benefits of the changes. We note that since the flows
arrive at different times, their routing decisions are
usually not made at the same time. We also assume
the presence of cross-traffic on the bottleneck links; the
cross-traffic bandwidths are drawn uniformly at random
from a specified interval. The capacities and loads are
always chosen such that it is theoretically possible to
route all flows with zero loss rate. Unless specified
otherwise, the parameters used in our simulations are
the values shown in Figure 1. We consider flows with
reasonably long life-times relative to the routing window
time, since only such flows would be able to benefit
from route-changes. We choose the default inter-arrival
times such that the number of flows in the system is
around 1000, given the lifetime. These are only the
default parameters, and the effect of changing them is
also explored.

We choose the average loss rate of the flows after the
system has warmed up as our metric of performance. We
also present the rate of route-changes when relevant.

Unless specified otherwise, our graphs show data
points corresponding to results averaged over 10 sim-
ulation runs; also depicted for these results are 95%
confidence intervals.

IV. PERFORMANCE OF �����
��	�� ROUTE

SELECTION

A flow which uses the �������
	�� method considers
all its potential paths, and selects the potential path with
the most available bandwidth The flow then sends data
on this selected path if that path’s available bandwidth
is greater than the bandwidth obtained on the current
data path by a factor of
 . We add random noise to
the available bandwidth calculations to partially account
for measurement errors that would occur with real-world
measurement tools [13]. In this section, we explore the
effect of several factors on �������
	�� ’s performance.

We start off with a simple illustration of the role of

in the stability and performance of the routing scheme.
Figure 2 plots the number of route changes observed
over 10 second windows, versus the progressed time of
a simulation, for 3 values of
 . The uppermost line
represents
���� , while the two (nearly identical) lower
lines represent
����! #"%$ and
��'&($. Figure 3 plots
loss rate similarly, with the three lines from top to bottom
representing
 values of � , &($, and �! #"%$, in that order.
We see that setting
)�*� leads to a high loss rate and
rate of change of routes.
+�,&($ causes a more stable
system, but the loss rates are still high since the flows
remain satisfied with poor routes.
-�.�! #"%$ represents
the best value of
 for this scenario.

Mean Inter-Arrival-Time 1 sec
Mean Flow Lifetime 1000 sec
Avg. No. of Flows at any time 1000
No. of bottleneck links 50
Mean /10 25
Mean Cross-Traffic Bandwidth 50% of capacity
Excess capacity 10% of load
Variation in flow bandwidths 1:4243

10 sec
Variation in

253
10%687(9:6<;
4=

for >@?@ABABC8D 8.75
Avg. Measurement Error 10%

Fig. 1. Default Parameters

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 1000 2000 3000 4000 5000 6000 7000 8000

N
um

be
r

of
 R

ou
te

 C
ha

ng
es

Time (s)

Simulation Lifetime: Route Changes

H=2
H=8.75

H=15

Fig. 2. Number of Route Changes over system time

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1000 2000 3000 4000 5000 6000 7000 8000

Lo
ss

 R
at

e
(f

ra
ct

io
n)

Time (s)

Simulation Lifetime: Loss Rate

H=2
H=8.75

H=15

Fig. 3. Average Loss Rate over system time

5

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

H

IAT=1s
IAT=2s
IAT=4s

IAT=10s

Fig. 4. Loss Rate variation with
=

, for different mean inter-arrival-
times (seconds)

Figure 4 shows the variation of average loss rate (on
the Y-axis) with different values of
 (on the X-axis),
with each line representing a different rate of arrival of
flows. As the rate of arrival decreases, we keep the mean
lifetimes fixed, and scale the flow bandwidths so that
the total load remains fixed. We observe that, for each
value of inter-arrival-time (E4FG�), the line starts high,
drops to a minimum, and then rises again. If the value
of
 is too low, excessive routing instability leads to
poor performance. If the value of
 is too high, the
flows remain satisfied with poor quality routes, and poor
performance results.

Figure 4 also illustrates that the optimal value of

varies significantly with respect to E5FH� . This optimal
value is hard to predict a priori and this remains an open
problem. Figure 5 illustrates a similar point. This graph
plots the variation of average loss rate with
 (on the
X-axis), with each line corresponding to a different mean
value of �@� . Again, we see that, for a given �B� , the loss-
rate can be high unless we choose the optimal value of

 . The optimal value of
 varies significantly as the the
number of potential paths per flow (�B�) changes. This
graph also indicates that higher values of �B� lead to
worse performance. This is due to increased probability
of interaction between two flows.

Figure 6 plots the variation of average loss rate as the
mean percentage of link bandwidth occupied by cross-
traffic is varied (on the X-axis). We see that GREEDY
performs quite well if the cross-traffic is larger than
75%. This is because the total bandwidth effect of route
changes comprise an insignificant fraction of the link
capacity.

From these results, we believe that �����
��	�� over-
lay routing with fixed
 would probably work well in

0

0.05

0.1

0.15

0.2

0.25

0.3

2 4 6 8 10 12 14 16

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

H

Pf=5
Pf=15
Pf=25
Pf=35
Pf=45

Fig. 5. Loss Rate variation with
=

, for different mean values of /I0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 20 40 60 80 100

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Percentage Cross-Traffic

H=8.75

Fig. 6. Loss Rate variation with Percentage Cross-traffic

the real world if the overlay flows comprise a small
fraction of the traffic on physical links, and if paths
belonging to different flows do not share bottleneck links
to a large extent. However, peer-to-peer traffic has been
reported to comprise more than 42% of total traffic to
and from a domain [14] - this gives rise to the possibility
that overlay routing flows could occupy a large fraction
of link bandwidths, in the future. Also, scenarios with
high probability of path-sharing could arise if several
flows use a common overlay infrastructure ([4]), or if
several flows of a peer-to-peer or overlay network do not
coordinate with each other. This could also arise if the
distribution of overlay nodes was skewed toward certain
domains, like universities; e.g., [14] reported that there
were more than 4500 peers of a peer-to-peer application
inside the campus network they studied. For shared
bottleneck links to exist, the bottleneck links of each
flow’s potential paths would have to lie on some link
other than the physical link connecting the overlay nodes

6

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 20 40 60 80 100

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Tr (seconds)

H=8.75

Fig. 7. Loss Rate variation with different routing window times
(seconds)

to the Internet - unless different independent overlay
flows used the same physical machine as an overlay
node. The latter possibility could arise in the case of
multi-user distributed testbeds like PlanetLab [5].

Next we consider the effect of increasing routing
window time while keeping the measurement window
fixed. This has the effect of increasing the accuracy
of measurement, since fewer flows would change their
routes during the measurement window. However, this
also leads to decreased reactivity which can adversely
affect performance. If we fix the value of
 at the
optimal value for ���J�K&MLON and then vary ��� , there
is no significant variation in performance, as shown in
Figure 7.

However, better performance might be obtained at
lower values of
 , since increasing ��� adds some
“restraint” in itself. Figure 8 shows the variation of
average loss rate on the Y-axis, with different values of

 on the X-axis. Each line represents a different value of
�P� , with ��� fixed at 10 seconds. We observe that, using
the optimal values of
 (i.e., the minimum of each line)
, the loss rate reduces as ��� increases, up to a point.
Thus, careful choice of the routing and measurement
windows can improve performance, if we also choose the
right value of
 . However, we notice that the optimal
value of
 is quite different for each value of ��� . This
motivates our proposal of a more effective method of
route selection in Section V-B.

V. IMPROVEMENTS TO ��������	��
In this section, we consider two methods of improving

the performance of route selection.

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10 12 14 16

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

H

Tr=10sec
Tr=20sec
Tr=40sec
Tr=80sec

Fig. 8. Loss Rate variation with
=

, for different routing window
times (seconds)

A. Randomized Route Selection Methods

Intuitively, adding an element of randomization can
add some stability to the system. We consider three
candidate methods to achieve this:
FQ��FSRT	 : The flow randomly selects a path from its

set of potential paths (with probabilities weighted by the
available bandwidth of potential paths).
����FQRT	 : The flow randomly selects a path from the

“best” UWV potential paths (where U�V is small compared
to the total number of potential paths, and “best” is
defined in terms of greatest available bandwidth).X ��FQRT	 : As observed by Mitzenmacher in study
of server load-balancing [9], a small amount of load
information is likely to be significantly better than no
load information. In addition, we observed in Section IV
that using all load information greedily is not always
beneficial. Therefore we explore the performance of the
following method: each flow selects a subset of UZY paths,
at random, from all its potential paths, and then selects
the path with the highest available bandwidth in this
subset. We make the probability of a path’s inclusion
in the subset proportional to its capacity, to account
(partially) for link heterogeneity.X ��FQRT	 has the additional benefit that each flow
needs to only probe U Y paths at a time for their load
(or available bandwidth) information, if it selected the
random subset at the beginning of the routing window.
It could then select the path with the highest measured
available bandwidth from this subset, at the end of the
routing window. The capacities of the paths need not be
probed at the same frequency as the load information,
since the capacities are unlikely to change over flow
lifetimes. Therefore if we assume that the measurement
overhead is dominated by the probing for load informa-

7

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

H

GREEDY
ARAND
SRAND
GRAND

Fig. 9. Loss Rate variation with
=

, for different randomization
methods

tion, this method reduces the overhead by a factor of
�[�4\]U�Y compared to the other methods.

Figure 9 shows the loss rates for different values of

 (on the X-axis), with each line representing one of
the methods of randomization for a system with the
default parameters, as in Figure 1. We notice that, while
the performance is still sensitive to
 , it is possible to
obtain much lower loss-rates than GREEDY, using the
randomized methods. In addition, the

X ��FQR^	 method,
which in this case reduces the overhead by _a`b , works as
well as the other methods.

We now explore the performance of the
X ��FSRT	

method in more detail. Figure 10 shows the loss-rate
as
 is varied on the X-axis, for different inter-arrival-
times (represented by the different lines). Similarly, Fig-
ure 11 depicts different values of �B� by different lines.
We observe that

X ��FQR^	 exhibits trends similar to
�������
	�� , but is less sensitive to
 . More importantly,
the loss-rates for all these scenarios are much lower than
�������
	�� loss-rates.

B. Discovery of Threshold

We observed, in Section IV, that poorly chosen values

of
 could lead to high loss rates, and that the value
of
 was sensitive to many parameters. Therefore, we
propose that end-hosts or flows dynamically discover the
value of
 best suited to their current deployment sce-
nario. Since we assume that the end-hosts do not explic-
itly communicate, they have to perform this discovery
independently. We propose the following algorithm: each
flow maintains its own value of
 . When the flow makes
a route change, it increases the value of
 , and when
a routing window passes by with no route change (i.e.
no path offers a bandwidth improvement factor greater

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

H

IAT=1s
IAT=2s
IAT=4s

Fig. 10. Loss Rate variation of c1?@d[e�C with
=

, for different
values of mean inter-arrival-time

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

H

Pf=5
Pf=15
Pf=25
Pf=35
Pf=45

Fig. 11. Loss Rate variation of c1?@d[e�C with
=

, for different
values of /10

than
), it decreases the value of
 .We experimented
with several combinations and modifications of addi-
tive/multiplicative increase and decrease algorithms, and
we found that the best performance was obtained in
most cases by multiplicative increase and decrease. In
addition, there is a trade-off between quickly moving
from the initial choice of
 to a “suitable” value, and
subsequent stability; therefore, we settled on a large (i.e.,
conservative) initial choice of
 ,and added a quick-
start phase with a multiplicative decrease factor of 2.
Figure 12 shows the flow diagram for this algorithm.

Figure 13 shows the performance of this algorithm for
our default system, with different decrease parameters
(on the X-axis), and increase parameters (one per line).
We find that we obtain very good performance for
increase parameters of 1.9 or greater, and for decrease
parameters of 1.01. We use these as our settings for
subsequent simulations.

8

The arrows represent state transitions made at the end of route change decisions.
The numbers on the arrows indicate whether a route change occured (1) or not (0).

H_init : high initial value (default=30).
MD_q : multiplicative decrease factor for the quickstart phase (default=2).

0

 0 1
H=1+(H−1)/MD_q

H=1+(H−1)*MI H=1+(H−1)/MD

 1

1

0

1 0

H=H_init

MI, MD : multiplicative increase, decrease factors for regular operation
(default MI=1.09, MD=1.01).

Fig. 12. Flow diagram for the MIMD
=

-discovery algorithm

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1 1.02 1.04 1.06 1.08 1.1 1.12

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Multiplicative Decrease Factor

MI=1.25
MI=1.5
MI=1.9

MI=3
MI=5

Fig. 13. Loss Rate variation with increase and decrease parameters

Figures 14 and 15 illustrate the performance of this
algorithm in a system with default parameters as in
Figure 1. The first graph plots the average loss rate
for different values of �f� (on the X-axis), while the
second does the same for different flow arrival rates (and
consequently, flow bandwidths). These figures show that
the discovery method reduces loss rates by more than
half compared to basic �����
��	�� (Section IV). While
the loss-rate still varies with �B� and the arrival rate, the
magnitude and variation of the loss-rate is much smaller
than �����
��	�� and often less than 1%.

0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30 35 40 45 50

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Paths per Flow

MIMD-H

Fig. 14. Average Loss Rate versus mean value of /I0

-0.02

0

0.02

0.04

0.06

0.08

0 2 4 6 8 10 12

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Mean Inter-Arrival-Time (seconds)

MIMD-H

Fig. 15. Loss Rate variation with mean inter-arrival-time(seconds)

VI. FLOWS THAT “CHEAT”

Until now in this paper, we have assumed that all
the overlay flows in a system utilize the same route
selection method. We now relax that assumption. Let
us assume that all the overlay flows in the system are
expected (much like the expectation of TCP-friendliness)
to use some method of restraint, like an appropriate value
of
 . What would happen if a subset of the overlay
flows decided to “cheat”, and attempt to obtain higher
bandwidth by using unrestrained �����
��	�� with low
values of
 ? Clearly this is a possibility - there have
been examples of people taking advantage of loopholes
in TCP [15] to obtain higher throughputs.

Figure 16 shows the loss rates for our default system
on the Y-axis, while the percentage of cheating flows,
out of the total number of flows, is varied on the X-
axis. The two different lines in each graph correspond to

9

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40 45

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Percentage of GREEDY Flows

GREEDY(Good),H=8.75
GREEDY(Cheaters),H=3

Fig. 16. Loss Rates with different percentages of “cheaters”

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 5 10 15 20 25 30 35 40 45

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Percentage of Cheating Flows

MIMD-H(Good)
GREEDY(Cheaters),H=3

Fig. 17. Loss Rates with different percentages of “cheaters” for the
dynamic discovery method

the cheating flows that use ��������	�� with low values
of
 , and the “good” flows, that use �������
	�� with
the value of
 that would be optimal if there were no
cheaters. From this we observe that the cheating flows
derive significant benefit. The performance degradation
of the good flows becomes significant when the number
of cheating flows approaches half the total number of
flows.

Figure 17 shows the loss rates when the “good”
flows use the dynamic discovery method for
 , and
the “cheating” flows use fixed low values of
 . We see
that the dynamic method is more resistant to cheating
- the performance of the good flows does not suffer as
much relatively. The cheating flows benefit to a small
extent, and only when they are less than 10% of the total
flows. This reduces the incentive of flows to cheat. When

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35 40 45

A
vg

. L
os

s
R

at
e

(f
ra

ct
io

n)

Percentage of Cheating Flows

MIMD-H(Good)
GREEDY(Cheaters),H=3

Fig. 18. Loss Rates with different percentages of “cheaters” for the
dynamic discovery method

we combine randomized selection and the dynamic dis-
covery of
 , we find that the “cheating” flows obtain
virtually no benefit in performance at all, even when
they are few in number, as shown in Figure 18.

VII. CONCLUSIONS AND FUTURE WORK

We have investigated the performance of independent
�����
��	�� route selection by end-hosts at the overlay
level, for a wide variety of scenarios. We find that
greedy route selection performs well under light load,
when the overlay flows comprise a small fraction of link
capacities, or when the paths of different overlay flows
do not share bottleneck physical links to a large extent.
However, when these conditions are not met, we find
that greedy route selection can perform poorly, unless
some restraint or stabilizing factor is used. We have
investigated three methods of applying this restraint -
randomization, using a hysteresis threshold, and increas-
ing routing windows.

Our two most interesting observations are: (a) it is suf-
ficient to measure a small subset of paths to obtain good
routing performance (half the loss-rates of �������
	��),
and (b) ��������	�� performance is heavily dependent on
the value of the hysteresis threshold
 , the optimal value
of which is dependent on other factors like flow arrival
rates or �g� . The latter observation motivates our proposal
of a simple dynamic algorithm for each flow to discover
a suitable value of
 , based on multiplicative increase
(and decrease) of
 in response to routing change (and
lack thereof), with a more rapidly decreasing quick-start
phase. This is found to perform well, reducing loss rates
to less than half of ��������	�� ’s loss rates.

As future work, we intend to consider more com-
plicated network models, derived from topologies and

10

workloads of testbeds that are used for deployment of
peer-to-peer or other distributed systems, like Planet-
Lab [5]. We also plan to investigate the behavior of these
routing methods and the threshold discovery algorithm
in the presence of more dynamic types of cross traffic.

REFERENCES

[1] “The gnutella home page,” http://gnutella.com.
[2] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek,

and Robert Morris, “Resilient overlay networks,” in Proc. ACM
SOSP ’01, Oct. 2001.

[3] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker,
and Sonesh Surana, “Internet Indirection Infrastructure,” in
Proceedings of ACM SIGCOMM 2002, Aug. 2002.

[4] Karthik Lakshminaryanan, Ion Stoica, and Scott Shenker,
“Building a flexible and efficient routing infrastructure: Need
and challenges,” Technical Report CSD-03-1254, University of
California, Berkeley, CA, Mar. 2003.

[5] Intel Research, “The PlanetLab Testbed,” http://www.planet-
lab.org.

[6] H. Eriksson, “MBone: The Multicast Backbone,” Communica-
tions of the Association for Computing Machinery, pp. 54–60,
1994.

[7] Yang hua Chu, Sanjay Rao, and Hui Zhang, “A Case For End
System Multicast,” in Proceedings of ACM Sigmetrics ’00,
Santa Clara, CA, June 2000.

[8] Aki Nakao, Larry Peterson, and Andy Bavier, “A routing
underlay for overlay networks,” in To appear in Proc. ACM
Sigcomm ’03, Aug. 2003.

[9] Michael Mitzenmacher, “How useful is old information?,” in
Proc. PODC ’97, 1997.

[10] T. Roughgarden and . Tardos, “How bad is selfish routing?,”
in In Proc. FOCS ’00, 2000.

[11] Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker,
“On selfish routing in internet-like environments,” in To appear
in Proc. ACM Sigcomm ’03, Aug. 2003.

[12] A.Shaikh, Efficient Dynamic Routing in Wide-Area Networks,
Ph.D. thesis, University of Michigan, May 1999.

[13] Manish Jain and Constantinos Dovrolin, “End-to-end available
bandwidth: Measurement methodology, dynamics, and relation
with tcp throughput,” in Proc. ACM Sigcomm ’02, Aug. 2002.

[14] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D.
Gribble, and Henry M. Levy, “An analysis of internet content
delivery systems,” in Proc. ACM OSDI ’02, Dec. 2002.

[15] Stefan Savage and Neal Cardwell and David Wetherall and
Tom Anderson, “TCP Congestion Control with a Misbehaving
Receiver,” ACM Computer Communication Review, vol. 29, no.
5, Oct. 1999.

