
Efficient and Robust Streaming Provisioning in VPNs

Z. Morley Mao∗, David Johnson, Oliver Spatscheck, Jacobus E. van der Merwe, and Jia Wang
AT&T Labs–Research

ABSTRACT
Today, most large companies maintain virtual private networks
(VPNs) to connect their remote locations into a single secure net-
work. VPNs can be quite large covering more than 1000 locations
and in most cases use standard Internet protocols and services.
Such VPNs are implemented using a diverse set of technologies
such as Frame Relay, MPLS, or IPSEC to achieve the goal of pri-
vacy and performance isolation from the public Internet.

Using VPNs to distribute live content has recently received
tremendous interest. For example, a VPN could be used to broad-
cast a CEO-employee town hall meeting. To distribute this type of
content economically without overloading the network, the deploy-
ment of streaming caches or splitters is most likely required.

In this paper, we address the problem of optimally placing such
streaming splitters or caches to broadcast to a given set of VPN end-
points under the constraints typically found within a VPN. In par-
ticular, we introduce an efficient algorithm with complexity O(V),
V being the number of routers in the VPN. This guarantees the op-
timal cache placement if interception is used for redirection. We
prove that the general problem is NP-hard and introduce multiple
heuristics for efficient and robust cache placement suitable under
different constraints. At the expense of increased implementation
complexity, each heuristic solution provides additional saving in
the number of caches required. We evaluate proposed solutions us-
ing extensive simulations. In particular, we show our flow-based
solution is very close to the optimal.

1. INTRODUCTION
The distribution of live streaming content is gaining popularity in

VPN environments to support webcasts ranging from tens to hun-
dreds of thousands of streaming media clients. Due to a lack of
layer 3 multicast availability in these environments, such stream-
ing services are typically offered using unicast transport protocols.
Obviously the inherent problem of distributing such a large number
of streams via unicast delivery is that some links within the VPN
might become overloaded.

The typical VPN network topology compounds this problem
even further. VPNs usually consist of a small hub network which
provides connectivity to, in some cases, thousands of individual
spokes. The fact that both the hubs and the spokes are usually ge-
ographically distant makes increasing the bandwidth to accommo-

∗Zhuoqing Morley Mao (email: zmao@cs.berkeley.edu) is a Com-
puter Science graduate student at University of California, Berke-
ley. This work was done during her internship at AT&T Research
Labs.

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 2003.

date a large number of unicast streams prohibitively expensive.
The standard solution to this problem is to deploy streaming

cache servers within the VPN which in the context of live stream-
ing simply split the unicast traffic and, therefore, can be used to
offload congested links. Such cache servers are offered today by a
large number of vendors such as Network Appliance, Volera, and
Cisco Systems. However, the cache cost, as well as the mainte-
nance cost associated with each cache, requires careful placement
of the caches to minimize the overall cost of the live streaming
infrastructure. In the context of an existing VPN, it is therefore im-
portant to find the optimal cache placement to minimize the number
of caches which have to be deployed to serve a given client popu-
lation.

We first show that this optimal cache placement problem is NP-
hard in general, and hence only restricted versions of the problem
are likely to be efficiently solvable. We then show that the problem
restricted to the use of interception caches has a provable optimal
solution with complexity O(V) with V being the number of routers
in the VPN. We also provide heuristic solutions for the general case
and thoroughly evaluate them using simulations. Each heuristic so-
lution provides improvement over the interception-based solution
at the expense of additional implementation cost.

The rest of this paper is organized as follows. In Section 2, we
discuss related work. Section 3 contains a more detailed problem
statement and describes our proposed cache placement algorithms.
Section 4 describes the simulation method we used to evaluate the
proposed algorithms, and Section 5 contains the simulation results.
Section 6 concludes the paper.

2. RELATED WORK
While a significant body of related work exists, we believe the

work presented in this paper to be unique in the following aspects:

• Considering the placement of cache servers for the support
of live streaming media in a VPN environment. Most related
work deals with the placement of servers to support Web traf-
fic in an Internet environment.

• Considering the minimum number of caches to fully support
a known user population. Most related work considers the
potential performance improvement of user experience as a
tradeoff against the cost of deploying servers.

• Considering the robustness of our algorithms in the face of
imperfect input data. While some papers mention this as an
issue, we are unaware of any work in which it has been thor-
oughly examined.

In the Web space, several papers consider the placement of ob-
jects or replicas on network servers [6, 8, 7]. The purpose here is

1

to decide which objects should be replicated on what set of net-
work servers while trading off improved performance against the
cost of servers. For the problem of live streaming, which we have
addressed, this kind of partial object placement is not possible be-
cause in general all of the content (i.e., the complete live stream)
needs to be distributed to all users.

Another group of papers investigated the placement of network
servers in various scenarios [13, 12, 5, 11]. The most general of
these with a problem statement closest to our work is work by Shi
and Turner [13]. They consider the number of servers which are
needed and where they need to be placed in an overlay network to
satisfy a certain quality of service to all clients. Their work dif-
fers from ours in that it aims at an Internet environment rather than
the more constrained VPN environment we have considered. Fur-
thermore, while their problem statement is very general, they make
a number of simplifying assumptions, e.g., network capacity con-
straints are ignored, which is not realistic for our problem setting.
Work by Jamin et al. [5] and Qiu et al. [12] investigate server place-
ment in the context of performance improvement of Web traffic.

In summary, the existing cache or object placement algorithms
for Web traffic in the Internet environment do not directly apply
to our problem, because streaming services have a more strict re-
quirement on bandwidth. There is usually a minimum bandwidth
guarantee needed for the streaming service to be acceptable. Fur-
thermore, streaming events are typically of longer duration than
web transactions and thus sufficient bandwidth must exist between
the client and the server during the entire duration of the event.
By taking into account this additional and indispensable bandwidth
constraint, our study is focused on developing both efficient and
robust algorithms for provisioning streaming services in mostly
known network settings.

3. PROPOSED SOLUTIONS

3.1 Problem statement
Figure 1 depicts a typical VPN topology to illustrate the scenario

we are considering in this paper. In the figure, a live stream is as-
sumed to originate from an origin server which connects directly
to a densely interconnected “hub network”, consisting of high ca-
pacity (typically WAN) links. It interconnects “spoke networks”
consisting of richly connected islands of LAN technology.

Figure 1 also shows the inherent problem with distributing con-
tinuous streaming content via unicast delivery. The thick lines show
a shortest-path distribution tree from the origin server. The num-
bers next to each of the lines indicate the required capacity of each
link assuming that each spoke network requires three units of ca-
pacity. The well-known solution to this scalability problem consist
of the distribution of streaming caching servers throughout the net-
work to effectively form an application level multicast distribution
mechanism.

In this paper, we address the practical and important problem
of determining the minimum number of caching servers required
to deliver live unicast streaming content to a given client popula-
tion. By definition, a client represents a streaming media end user
that requests a single live stream. We start by assuming that the
network topology and link capacities are known. These constraints
are relaxed later to investigate the robustness of our algorithms. We
assume all clients need to be satisfied, i.e., we want to serve the live
streams without degradation in quality to all clients. Given the min-
imum number of caching servers, a second optimization criterion is
minimizing the network congestion defined as the total bandwidth
usage by placing the caches strategically.

There is an inherent tradeoff between bandwidth utilization and

3

6

12

3

33

3

Origin
Server

Router

Hub Network

Spoke Network

Figure 1: Streaming distribution in a VPN from the origin
server

the number of caches needed to satisfy a user population. At an
extreme, we can place a cache at each router to achieve the minimal
total bandwidth usage, i.e., emulating the use of native multicast.
The optimization criteria we study in this paper require that we
satisfy all users with the minimal number of caches. Therefore,
we first find the minimal number of caches and then place them to
minimize bandwidth usage. We emphasize that our algorithms can
be easily adapted to a different cost model by modifying the cost of
adding caches and bandwidth usage. For instance, our algorithms
can be used to discover the bottleneck links and compare the cost
of placing a cache versus just upgrading the link. Our contribution
is to provide a general framework for optimizing different criteria.
We believe that our chosen criteria represent a reasonable choice
for practical considerations.

More precisely we make the following assumptions unless oth-
erwise stated:

• Network information: The topology, link capacity, and re-
ceiving client distribution are known.

• Origin streaming server: The location of the origin server and
the bandwidth of the stream are known. We assume there is
a single origin server.

• Routing: IP layer routing is performed using a shortest path
algorithm. We assume the default routing metric (link weight
is the reciprocal of the link capacity) and assume the absence
of layer 3 multicast support.

• Request routing: A client can request the stream from any
cache or the origin server.

• Cache location: Any router can be a potential location for
cache placement.

• Application requirement: The delay and delay jitter between
the client and the cache/origin server is not of concern, how-
ever, the route must provide sufficient bandwidth for the
stream.

• Bandwidth usage: The bandwidth usage for each link cannot
exceed the link capacity. We assume bandwidth on different

2

y
21 y

22
z

2221
z

Root

x21 x22 x23

21 21 22a b22
a b

to
 s

et
 n

od
e

to
 s

et
 n

od
e

to set node

Figure 2: An element component in the transformation from
X3C to the Minimum Cache Placement problem when k2 = 3

links is of equal cost, and we minimize the total bandwidth
used, which is the sum of bandwidth usage on all links. If
different types of links have different cost models, the prob-
lem can be easily modified by including a cost unit for each
link.

• Cache or origin server is not the bottleneck relative to the
bandwidth usage; thus, server load is not a consideration in
our algorithms. We assume that each server can saturate the
total bandwidth of its outgoing links. This assumption is rea-
sonable in the streaming context, as even small streaming
servers today can trivially saturate OC-12 links, and large
servers can handle Gigabit speeds. Note, however, our solu-
tion can be easily adjusted if server load is an issue by in-
cluding a bound on the server load.

• VPN topology is of hub and spoke nature, where the hub
consists of a few highly meshed routers connected with rel-
atively high bandwidth links across the wide area. Each hub
node serves several spoke domains.

As indicated earlier, we use this “perfect” knowledge as a start-
ing point and then consider the robustness of our algorithms in the
case of incomplete knowledge.

3.2 Problem complexity
The general Cache Placement Problem can be defined as follows.

We are given a number K of allowed caches and a network mod-
eled as a directed graph G(V, E), where V is the set of nodes and
contains a specified root R ∈ V and E is a set of directed links of
known capacity, expressed as a multiple of the stream bandwidth.
For each node we are also given the number of streams requested
by clients located at that node. Do K caches suffice to satisfy all
the demands?

Claim: The Minimum Cache Placement problem is NP-hard.

PROOF. Our proof is by a transformation from the Exact Cover
by 3-Sets problem (X3C) [4] to our problem. An instance of
X3C consists of a set X = {x1, x2, . . . , x3q} and a collection
C = {c1, c2, . . . , cn} of 3-element subsets of X (triplets). The
answer for an instance is “yes” if and only if there exists a subcol-
lection C ′ ⊆ C such that every element of X occurs in exactly one
member of C ′. Note that we must have |C ′| = q. We transform an
X3C instance to an instance of our problem as follows.

Suppose that xi occurs in ki triplets. Then xi is represented in
our construction by a component consisting of 5ki−4 nodes which

we shall denote as xi,h, 1 ≤ h ≤ ki and ai,h, bi,h, yi,h, zi,h,
1 ≤ h ≤ ki − 1. If we let {u, v} represent the pair of
directed edges (u, v) and (v, u), the edges for this component
are {R, ai,h}, {R, bi,h}, {ai,h, xi,h}, {ai,h, yi,h}, {ai,h, zi,h},
{bi,h, yi,h}, {bi,h, zi,h}, and {bi,h, xi,h+1}, for 1 ≤ h ≤ ki − 1.
Figure 2 shows an example element component when k2 = 3.

For each set cj ∈ C we have a node cj , with edges {R, cj} and,
if the set cj contains the hth occurrence of element xi, {cj , xi,h}.

All edges have capacity 1 and each node has one client.
We claim that K = 3n−2q caches suffice if and only if an exact

cover existed for the original X3C instance. First suppose such a
cover C ′ exists. We can then satisfy the requests as follows. Each
cache will be placed at an a, b, or c node, and the root will send
streams to all such nodes, thus satisfying their individual requests
and supplying any caches they contain. We first place caches on
each of the cj nodes corresponding to members of C ′ (a total of
q caches), with the cj node sending a stream to each of the three
xi,h nodes to which it is linked. Now consider the component for
an element xi. Because C ′ was an exact cover, exactly one of the
vertices xi,h is served by a cache at a set node. Let us denote this
node by xi,H . We then place a cache at node ai,h, 1 ≤ h < H ,
with ai,h sending streams to xi,h, yi,h and zi,h, and on node bi,h,
H ≤ h ≤ ki − 1, with bi,h sending streams to yi,h, zi,h, and
xi,h+1. The reader may verify that the overall number of caches
used is 3n − 2q, as desired.

Now suppose that K caches suffice. We must show that an exact
cover exists. This is a bit more complicated, and we leave the com-
plete details for the extended version of this paper. A key observa-
tion is that for each element xi, the corresponding element compo-
nent must contain at least ki − 1 caches, one from each ai,h, bi,h

pair.

Note that although the topology of the instance we constructed
does not follow the “hub and spoke” model specified in the previous
section, it could be the topology for a spoke in such a model, and
thus the problem remains NP-hard when restricted to the hub and
spoke model. Note also that the construction in the above proof
shows that the Cache Placement Problem is NP-hard even if all
links are symmetric and all capacities are equal to 1. Furthermore,
the result holds both when all routes must follow shortest paths as
in OSPF and when there are no constraints on routing other than
link capacity.

3.3 Interception proxy based solution
To make use of streaming caching servers to build application

level distribution trees, streaming clients have to request the stream
from a caching server rather than the origin server. One way to
achieve this is by transparently intercepting requests for streaming
content at the network layer and passing it to a caching server, the
intercepting proxy approach, as illustrated in Figure 3. In the figure,
the numbers next to each of the lines indicate the required capacity
of each link; arrows of the same line type indicate these streams
come from the same source 1. WCCP [3] is an example proto-
col that enables this functionality by intercepting requests on cer-
tain port ranges in a router and passing all such traffic to a caching
server.

Fortunately, when intercepting proxies are used, the problem is
simplified by restricting traffic to a single distribution tree rooted
at the origin server. Thus, a cache can only serve the clients down-
stream from the root of the tree, given the viewpoint that the root of

1For ease of illustration, we place caches at the hub nodes. In prac-
tice, as we show later, caches are typically placed in spoke domains
and rarely needed in the hub network.

3

3

3

6

1

3

3

1

5

3

Caching Server1

1

1

1

Figure 3: Streaming distribution using interception proxies

the tree is the origin server. Such a restriction represents the mech-
anism used in the intercepting proxy solution where end clients are
requesting from the origin server as they would normally do, but
caches placed on the route between the client and server intercept
the request and deliver the stream. We now present a simple and
efficient greedy algorithm that gives the optimal solution in terms
of the minimum number of caches. We subsequently show how
a dynamic programming algorithm working on the results of the
greedy solution can compute a way to place this minimum number
of caches so as to minimize the total bandwidth used.

3.3.1 Greedy minimum cache placement algorithm
We assume we are given a distribution tree T with nodes V and

edges E directed away from the root vs, which is the origin server
for the stream. In addition, there is a capacity Ce for each edge
e ∈ E, and a demand (number of clients requesting streams) Sv

for each node. We assume without loss of generality that every leaf
node has at least one client requesting a stream, i.e., that Sv ≥ 1
for all leaf nodes v. If not, we can simply delete the leaf node and
its incoming link from the tree. The tree itself can be computed
in O(|V |) time based on router table information, assuming that
shortest path routing without path splitting is in effect, as in com-
mon implementations of the OSPF routing protocol.

In what follows, we shall use the notation De to denote the
amount of bandwidth required on link e, given the current cache
placement. Note that if De > Ce the link is overloaded. If the link
(u, v) is overloaded, we shall call v a red node; otherwise it is a
green node. Note that one way to get a feasible cache placement is
simply to identify the set of red nodes for the case of no caches,
and then place a cache on each red node. This will be called the
“red nodes” solution in what follows. This may not be an optimal
solution however. To get an optimal solution for a tree T , we can
use the following algorithm.

Algorithm: Label each node v with a depth value d(v) – the
number of links on the path from v to the origin server vs. Let
dmax = max{d(v) : v ∈ V }. For each node v, let e(v) denote the
incoming link for v, i.e., the unique edge (u, v) in the tree. (We can
let this be a dummy edge of infinite capacity in the case of the root
vs.) Let T (v) denote the subtree rooted at v and let children(v)
denote the set of nodes u such that (v, u) ∈ E.

Greedy(T)
For each i = (dmax, dmax−1,1),

For each v ∈ V with d(v) = i

Recompute De(v) as Sv +
∑

u∈children(v) D(v,u).
If De(v) > Ce(v), place a cache at v and set De(v) = 1.

Note that the algorithm works in from the leaves of the tree, pro-
cessing a node only after all its children have been processed. It
takes time O(|V |) since it processes each node once, and looks at
each link (of which there are only |V | − 1 in a tree) just twice.

Claim: The greedy algorithm assigns the minimum number of
caches needed to satisfy all client requests, assuming flows are re-
stricted to the distribution tree T .

PROOF. For each node v, let opt(v) denote the minimum num-
ber of caches that T (v) can contain in an overall cache placement
that satisfies all requests. Our proof is by induction using the fol-
lowing induction hypothesis:

For each node v that has been processed

1. The subtree rooted at v contains opt(v) caches, and

2. The updated value De(v) is the minimum possible value over
all cache placements for T (v) that use opt(v) caches and
satisfy all requests.

Note that (1) and (2) hold for the leaves of T : If a leaf v gets
a cache then this must be unavoidable, and the updated value of
De(v) is 1, the minimum possible value. If v does not get a cache,
then one is not required and De(v) = Sv , the minimum possible
given that v does not contain a cache.

The induction step, proving that if (1) and (2) hold for all the
children of v then they hold for v as well, is relatively straightfor-
ward and we postpone the details to the extended version of this
paper. Given the induction step, we conclude that (1) and (2) hold
for all nodes, and in particular they hold for the root, which implies
that we have an optimal solution.

3.3.2 Minimizing bandwidth utilization
As shown in the previous section, the greedy algorithm produces

a cache placement for a tree such that for any node in the tree, the
number of caches in the subtree rooted at the node is the minimum
possible if all requests in that subtree are to be satisfied. This place-
ment may not, however, be the best with respect to bandwidth uti-
lization of some other measure of congestion. A standard method
for measuring overall congestion is to take the sum over all edges e

of a congestion cost cc(e, t) for that edge, where t is the amount of
traffic carried by edge e, and cc(e, t) is typically assumed to be a
nondecreasing function of t. For this application, we may assume
that t is an integer in the range from 0 to capacity(e), where capac-
ity is expressed in terms of the maximum number of simultaneous
streams the link can carry. For congestion cost corresponding to
bandwidth utilization is simply cc(e, t) = t.

It is not difficult to see that it might be possible to decrease total
congestion cost by moving a cache from its greedy location toward
a leaf. Although this may increase the traffic on the link coming
into the old location, it might decrease the traffic on the link be-
tween the old and the new location, for a net decrease in conges-
tion.

In this section we observe that, given the greedy placement
and an arbitrary congestion cost function cc(e, t), we can effi-
ciently find a placement that minimizes total congestion cost, sub-
ject to the constraint that the optimal number of caches must

4

3

3

9

1

3

4

3 1

3

1

1

Figure 4: Streaming distribution with router-based redirection

be used. The algorithm uses dynamic programming and takes
time O(

∑
e∈E

capacity(e)2) = O(|E|(max{capacity(e) : e ∈

E})2). Note that this can be fairly expensive, since some of the
links in the cores of the networks we study in our simulations have
sufficient capacities to carry more than 8000 streams. However,
one would expect a shortest-path tree in such a network to contain
relatively few such edges.

Preliminary simulations show that applying the algorithm to the
bandwidth utilization case (cc(e, t) = t) can result in improve-
ments of as much as 20% in total congestion for large topologies.
The technical details of the algorithm and the simulations will be
presented in the extended version of this paper.

3.4 Additional redirection systems
In the previous section, we assumed that client requests are in-

tercepted on layer 3 and redirected to an appropriate cache. How-
ever, all cache vendors today offer in addition to interception
based redirection, layer 7 based redirection methods such as DNS,
HTTP/RTSP redirect or meta-file rewriting [2].

Layer 7 redirection relaxes the constraint of using a single distri-
bution tree from the origin server and allows each client to use any
cache, no longer restricting the client to caches that lie between it
and the root on a fixed distribution tree. Since this problem is NP-
hard as proved in Section 3.2, we settle for designing heuristics that
attempt to find near-optimal solutions.

Similar to the Content Distribution Networks that commonly use
DNS to do server selection [10], a layer of indirection is required to
translate the request for streaming server by the user to the desired
server. Such Layer 7 redirection can be done at different granu-
larities with higher cost associated with a finer granularity. At the
extreme, each client attached to the router can potentially select a
different cache server. A more coarse-grained redirection can be
done on a per prefix level. Similarly, clients attached to the same
router are constrained to select the same server. We consider the
improvement in cache reduction compared to the greedy algorithm
at two different granularities: client-based redirection and router-
based redirection. Note, due to the inherent tradeoff between band-
width usage and the number of caches, these solutions attempt to
find fewer caches by making use of links with spare bandwidth
and hence have higher overall bandwidth utilization. These two
approaches are shown in Figures 4 and 5. In Figure 4, all clients

3

3

3

3

7

3 1

3
6

1

1

1

Figure 5: Streaming distribution with client-based redirection

connecting through the lower left router are served from the same
cache, while in Figure 5, clients connecting through the bottom left
router are served from two different caches. Here we assume the
two clouds attached to the lower left router are not separate spoke
networks; they are clients directly connected to the router.

3.4.1 Router-based redirection
In this section we present a heuristic for exploiting router-based

redirection. Finding the best cache placement for router-based redi-
rection is NP-hard (as implied by the constructions in Section 3.2),
but the following algorithm can provide significant improvements
over simply using interception caches, as we shall see in our simu-
lation results. As with the Greedy algorithm of Section 3.3.1, the
algorithm assumes we start with a shortest-path distribution tree T

with depths d(v) for each node in V , but now we are not required
to restrict all our paths to T .

Greedy Router Redirect(G, T)
Begin by computing link demands De under the assumption that
all routing follows the distribution tree and no caches are used.
Let R denote the initial set of red nodes (nodes v whose incoming
link e(v) has De(v) > Ce(v)).

For each i = (dmax, dmax−1,1)
Let R′ ⊆ R be the set of red nodes with d(v) = i.
For each v ∈ R′,

Call heuristic H(v) (described below) to identify
a set R(v) of red nodes that can be turned green if
a cache is placed on v. Set x(v) = |R(v)|.

Order the nodes in R′ by decreasing value of x(v).
While R′ is nonempty,

Let v′ be the first node in R′ according to the above order
and place a cache at v′.

To the extent possible use the routing computed by H(v′)
to turn red nodes in R(v′) green, so long as this can be
done without turning any green nodes red.
(Note that if this is not the first cache placed at depth i

not all conversions envisioned in the computation of H(v)
may still be possible.)

Remove any nodes that have turned green from R and R′.

5

The heuristic H(v) works as follows. We randomly pick nodes
(without replacement) from R in order of decreasing depth, starting
with depth d(v). (By the way the algorithm works, H(v) is only
called when there are no red nodes with greater depth than v.) For
each chosen node v′, we then look for a way to route streams from
a cache at v to v′ or its children so as to reduce the demand on
e(v′) enough to turn v′ green, subject to the requirement that if the
cache serves any client at a node, it must serve all the clients at that
node. If we find a way to turn v′ green, we adjust the traffic on the
affected links to reflect the changes required, both from adding the
new streams from the cache at v and from deleting the old streams
from other caches or the origin that were replaced. We then go on
to the next choice for v′ and continue until we have considered all
red nodes other than v.

Note that H is just a heuristic. (The problem of finding the max-
imum number of red nodes that can be turned green is itself NP-
hard.) As we have implemented it, H has running time O(|V ||E|),
so the running time for the overall algorithm is O(|V |2|E|).

3.4.2 Client-based redirection
In the algorithm of the previous section, we assumed all clients

attached to a router must request from a single cache server. To
handle client-based redirection we simply modify heuristic H(v)
so that it does not have to obey this restriction. Details will be
presented in the extended version of this paper.

3.4.3 Flow-based redirection
All the algorithms presented assume routing is predetermined us-

ing shortest path. However, source routing can be made available
using technologies such as MPLS or OSPF weight adjustments.
In such VPNs, end-to-end routing is controlled such that a client
can be redirected to a particular cache using a path avoiding bot-
tlenecks. In this regime we can determine whether a given set of
caches suffice by solving a maximum flow problem in an auxiliary
graph (details in the extended paper). This gives rise to the fol-
lowing heuristic: Given a cache placement from one of the greedy
algorithms, we randomly select a cache to delete and test whether
the new set of caches suffice using our maxflow subroutine. If the
new set suffices, we delete the cache; otherwise we keep it. This
process proceeds until we reach a situation in which no cache can
be deleted. As discussed in Section 5, the solutions obtained using
this simple heuristic is very close to optimal.

3.4.4 Local exhaustive search
To evaluate the effectiveness of our algorithms, we would like

to calculate the minimum number of caches needed for a given
network assuming any user can request from any cache using any
route. Due to the NP-hardness of the problem, this is likely to re-
quire exponential time. However, although time exponential in the
size of the full network will typically be infeasible, many of our
instances are such that exhaustive search is feasible for each spoke
network separately, on the assumption that every hub node contains
a cache. If we then add up the total number of caches for all the
spokes, we obtain a lower bound on the overall total needed, and
one that is off by at most the number of hub nodes, typically 6 or
fewer in our experiments (a very small number compared to the
total number of nodes in our larger test instances).

3.5 Robustness considerations
One of the assumptions in our problem statement is that we

have complete knowledge of the network including the topology,
link capacity, and sharing of layer 3 links at layer two (which we
can model by breaking links into shared and unshared segments).

However, in practice, it is difficult to obtain completely accurate
information on the entire VPN. Wide area links are typically well-
known, but various locally managed spoke networks may have net-
work configurations that are not fully known. Link bandwidth es-
timation tools may have errors and do not provide information on
layer 2 sharing due to VLAN trunking. Furthermore, background
traffic load can always reduce the available bandwidth.

Thus, it is essential to evaluate how well our algorithms perform
under such practical constraints. The solutions presented so far
unrealistically assume that the link capacity is well known and there
is no background traffic. In Section 5 we empirically measure the
number of clients left unserved due to faulty capacity estimation
in our model, and also measure the improvement obtainable if we
restrict usage of links to 80% of capacity, thus using more caches
but hopefully serving more clients.

4. SIMULATION METHODOLOGY
To evaluate the effectiveness of various algorithms proposed in

this paper, we simulate the behavior of our algorithms on typical
VPN hub-spoke topologies. In this section, we discuss the simula-
tion parameters and assumptions, network topologies, and evalua-
tion metrics used.

4.1 Algorithm implementations
We implemented our algorithms in C using the Stanford Graph-

base library [9] which provides the basic graph data structure and
graph manipulation routines. Our implementations are efficient and
can handle networks with up to 10,000 routers given the 2 gigabyte
memory constraint of the machine on which we ran our experi-
ments. Our implementations are modular, allowing the specifica-
tion of different cost constraints and different optimization criteria
in the algorithms.

4.2 Network topology
Hub-spoke topology is used in simulations with configurable hub

and spoke size. Typically each spoke domain attaches to a single
hub router. However, for redundancy purposes, a spoke domain can
be multihomed to another hub router at a different location. The
wide area links between the spoke domain and the hub router are
typically of high speed, but usually of lower speed than the links
between hub routers. Finally the links between routers in the same
spoke domain are typically 10Mbit, 100Mbit or 1Gigbit Ethernet
links.

Our simulations encompass three classes of VPNs.

• Large companies: a large number of spoke sites with high
bandwidth between the hub routers.

• Retail stores: a large number of spoke sites with relatively
smaller bandwidth between hub routers.

• Engineering firms: a few dozen sites with hundreds of net-
works at each site.

We modified the GT-ITM internetwork topology generator [1]
to produce layer 3 hub-spoke topologies. Since each router has a
number of clients requesting the streaming service, we make sure
that the topology is connected. The topology inside each spoke
domain is constructed by connecting two vertices randomly with a
specified probability.

The input parameters to the topology generator are the follow-
ing: number of fully meshed hub routers, average number of spoke
domains per hub router, average number of routers per hub, number
of multihoming links, and the probability that two routers inside the

6

Link type 10Mbit 100Mbit 1Gbit T1 DS3 OC12 OC48

spoke 40% 50% 10% - - - -
hub-spoke - - - 45% 30% 25% -

hub - - - - 50% 45% 5%

Table 1: Link capacity assignment in simulations

sample size mean median variance max min 86%ile 95%ile
619 -21.5 -0.028 0.0071 291 -971 0 22.2

Table 2: Error distribution for client-based capacity estimates
(unit:Mbps)

same spoke are connected. Multihoming links are randomly placed
between a hub router and a spoke router not within the spoke do-
main connected to the hub router. Furthermore, for the evaluation
of the resilience of our algorithms to uncertainties in topology data,
the topology generator also takes in an error distribution for link ca-
pacity estimation and a value representing the probability that two
links in the same spoke domain share at layer 2.

4.3 Simulation parameters and assumptions
We now describe the basic assumptions made in the implemen-

tation of our topology generator. Some of these assumptions are
specified as input parameters and can be modified for different op-
timization goals.

• Link capacity and routing: The network parameters are
mostly known, both link capacity as well as Layer 2 shar-
ing of links. Symmetric shortest path routing is assumed
with link weight being the reciprocal of the capacity values.
The links are modeled as bidirectional with symmetric band-
widths. We relax the assumption of known capacity and link
sharing in the evaluation of robustness of our algorithms. We
use the distribution in Table 1 to assign link capacities. The
values in the table present typical values for these types of
links based on our survey.

• Client distribution: clients that need to receive the unicast
multimedia streams are located at known locations. Each
router has between 20 and 70 clients attached to it, which
is typical distribution for a LAN. Each client must receive
the stream either from the origin server or a cache server. A
single stream requires 300kbps bandwidth in the simulations.

• The streaming source is located in the hub domain. If a dif-
ferent streaming source is used, the solution to the problem
is still applicable by first delivering the stream to the in-
tended origin server location and then using the allocated
cache servers to distribute the content as is often done in
practice. In our simulations, we found that due to the sym-
metric nature of the hub domain topology where hub routers
are highly meshed, the cache placement results are quite sta-
ble for different selection of streaming sources within the hub
domain.

• The error distribution for link capacity estimates is directly
obtained from a measurement study we performed on the
AT&T corporate VPN based on more than 600 measure-
ments. We developed both Java and activeX based client side
measurement tools and asked voluntary participants from
AT&T corporate employees to visit the measurement Web
page. We compare our measurement results with the survey

0 500 1000 1500 2000 2500 3000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of routers

nu
m

be
r

of
 c

ac
he

s
pe

r
ro

ut
er

red nodes (spoke degree=3)
greedy algorithm (spoke degree=3)
red nodes (spoke degree=4)
greedy algorithm (spoke degree=4)

Figure 6: Effect of spoke domain size and spoke router degree
on cache requirement

results from the participants to obtain the error distribution
shown in Table 2. Most of our estimation underestimates the
true capacity values; therefore, the errors do not have much
impact on overloading links.

4.4 Evaluation metric
We evaluate our algorithms in terms of the number of caches re-

quired to satisfy a given user demand. Secondly, we examine the
amount of bandwidth used. Due to the inherent tradeoff between
the number of caches and bandwidth usage, fewer caches usually
result in more bandwidth usage. However, we found that some
algorithms result in the same number of caches but with higher
bandwidth usage. To test the resilience of the algorithms to inac-
curate topology information, we calculate how many users are not
satisfied.

5. SIMULATION RESULTS
In this section, we evaluate the effectiveness of our proposed al-

gorithms on a variety of hub and spoke topologies. We provide
insight on when more complex solutions will provide more benefit
than simple greedy strategies. We also show how various properties
of the topology affect the results of the algorithms.

5.1 Interception proxy based solution
We first study the effectiveness of our greedy algorithm. We also

highlight some interesting effect of the topology on the cache re-
quirement. Figure 6 plots the average number of cache servers per
router required using the greedy algorithm for spoke router degree
of 3 and 4, as the spoke domain size increases. The size of hub
network is fixed at 5 hub routers, each with an average of 40 spoke
domains. We define the spoke router degree or spoke degree to be
the average number of outgoing links a router in the spoke domain
has. The figure shows that increasing spoke domain size increases
the overall cache requirement and increasing spoke router degree
decreases cache requirement. With larger spoke domain size, there
is inherently higher demand for bandwidth because of larger num-
ber of clients. However, the average number of caches per router
actually decreases slightly with increasing spoke size, because a
single cache can serve more clients. With higher router degree, a

7

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

number of routers

av
g

B
W

 r
eq

ui
re

m
en

t p
er

 li
nk

 (
M

bp
s)

BW requirement (spoke degree=3)
greedy algorithm (spoke degree=3)
BW requirement (spoke degree=4)
greedy algorithm (spoke degree=4)

Figure 7: Effect of spoke domain size and spoke router degree
on total bandwidth requirement

cache placed inside a spoke domain can serve more clients; there-
fore, fewer caches are needed overall. Intuitively, caches should be
placed where there is high degree of connectivity to maximize its
benefit.

Figure 6 also plots the number red nodes versus topology size.
Red nodes are routers with demand from child routers exceeding
its parent link capacity in the original distribution tree before any
caches have been placed. This gives an upper bound on the number
of caches required using the greedy algorithm. As the number of
routers increases, the probability of a cache alleviating the demand
of its parent red nodes also increases. Note that the percentage by
which the greedy algorithm improves on this upper bound is sub-
stantial, although the gain declines as router degree increases. For
large topologies with spoke degree of 3, the maximum reduction
in cache requirement is about 28%. The variance in the results are
due to differences in the number of multihoming links, client dis-
tribution, and randomness in topology generation.

We now study the benefit of caching on reducing bandwidth us-
age. Figure 7 plots the average per link bandwidth requirement
in the presence of caches using the greedy placement (shown in
Figure 6) compared with that in the original network using a distri-
bution from the origin server. The benefit of cache servers is quite
clear, as the bandwidth requirement grows roughly sublinearly with
the greedy algorithm’s cache placement. The rate of increase is
visibly faster in the case when no caches are present. We also
note that the original bandwidth requirement for the topology with
spoke router degree of 3 is slightly higher than the topology with
spoke router degree of 4 for the same router count. Intuitively, with
higher spoke degree, there is higher chance of aggregating traffic
because the distribution tree is bushier. With higher router degree,
a single cache also has more chance of serving more clients. As we
have shown in Figure 6, fewer cache servers are needed with higher
spoke degree for the same topology size. Due to the inherent trade-
off between the number of cache servers and bandwidth usage, the
bandwidth usage in the presence of caches is slightly higher for the
topology with spoke router degree of 4, because of fewer number
of caches.

Figure 8 shows the median number of caches required for a given
topology as the number of multihoming links increases. The topol-

0 20 40 60 80 100 120 140
240

245

250

255

260

265

270

total number of multihoming links

m
ed

ia
n

nu
m

be
r

of
 c

ac
he

s
us

in
g

gr
ee

dy
 a

lg
or

ith
m

Figure 8: Effect of multihoming links on cache requirement

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

number of stubs per hub node

nu
m

be
r

of
 c

ac
he

s
us

in
g

gr
ee

dy
 a

lg
or

ith
m

Figure 9: Effect of number of spoke networks per hub router
or spoke size on cache requirement

ogy consists of 12 hub routers with an average of 10 spoke domains
per hub router and a spoke router degree of 3. On average, there
is less requirement for cache servers as the number of multihoming
links increases. Any multihomed spoke domain can reach the hub
network through any of the links. The shortest path tree rooted at
the origin server in the hub network takes advantage of such mul-
tihomed links to find higher capacity paths to the spokes and thus
minimize the number of caches needed. In this example shown,
for this particular topology, the amount of saving in the number of
cache server requirement can be more than 10%.

Figure 9 shows the effect of the number of spokes per hub node
or the spoke size on cache requirement. In this set of simula-
tions we keep the total number of routers in the topology constant
at 2,412; the total number of clients varies between 105,486 and
109,072 with standard deviation of 694. There are 12 hub nodes in
the hub network. We vary the number of spoke domains attached
to each hub router. In effect, we also vary the number of routers in
each spoke domain to keep the total number of routers constant. At
one extreme, each hub router has only a single spoke domain with
200 routers. At the other extreme, each hub router has 200 spoke
domains, each with a single router. As the number of spoke domain
increases, less aggregation is possible. Each spoke domain only has
a single link to the hub domain. If that link is unable to support the
client demand within the spoke domain, a cache must be placed

8

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of routers

nu
m

be
r

of
 c

ac
he

s
pe

r
ro

ut
er

greedy
router−based redirection
client−based redirection
flow−based
exhaustive−search

Figure 10: Comparing approximation algorithms with exhaus-
tive search

there. The smaller the spoke domain, the fewer clients can make
use of the cache. As a result, the topologies with numerous small
spoke domains require significantly more caches. We emphasize
that this is an inherent limitation in the topology and is not due to
the greedy algorithm. Designers of VPNs may take this effect of
topology on cache requirement into consideration.

5.2 Additional redirection systems
We now compare the greedy algorithm and the additional redi-

rection systems with the bound obtained using local exhaustive
search. Figure 10 plots the average number of caches per router
with each data point representing the mean of 60 simulation runs
with varying number of multihoming links. It shows that as the
number of routers increases, greedy is outperformed by router-
based, client-based, and flow-based redirection. With large topolo-
gies, client-based redirection can reduce the number of caches used
by greedy algorithm by more than 27%. We also observe that finer
grained redirection provides sufficient benefit for large networks.
Client-based redirection can provide more than 17% in the number
of caches compared with router-based redirection. And flow-based
redirection can in addition reduce up to 40% number of caches
compared to the client-based redirection. The curve for flow-based
algorithm and local exhaustive search are very close to each other,
indicating that flow-based redirection results in close to optimal
number of caches. In fact, the difference is just 18 caches or less
for large topologies, out of a total of 384 or fewer caches.

This particular example is based on the network topology con-
sisting of 6 fully meshed hub routers in the hub network, each
hub router having on average 20 spoke domains, and an average
spoke router degree of 3. The number of multihoming links vary
between 1 and the hub size 6. This means that the local exhaustive
search may predict up to 6 fewer caches compared to the true op-
timal placement. We have observed similar results with different
topology setups.

5.3 Robustness evaluation
To evaluate the robustness of these algorithms, we introduce

some errors in the topology information, specifically, the link ca-
pacity estimation and sharing of links at layer 2. The results dis-
cussed here also apply to other types of errors, e.g., the inaccuracy

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

number of routers

av
er

ag
e

nu
m

be
r

of
 u

ns
at

is
fie

d
us

er
s

greedy
router−based redirection
client−based redirection

Figure 11: Understanding the error resilience of the algorithms
to imperfect topology data

in the estimation of the number of clients. We obtain the error
distribution of capacity estimation from a measurement study we
conducted as shown in Table 2. The measurement methodology we
used is a variant of the standard packet pair based probing. We note
that other types of measurement methods may have different error
characteristics. For future work, we plan to consider other types of
error distribution. We set the probability of sharing between two
random links inside the same spoke domain at layer 2 to be 0.1 for
the purpose of this study.

5.3.1 Existing algorithms
Figure 11 plots the number of unsatisfied users due to overloaded

links for each algorithm when we introduce an empirical error dis-
tribution for link capacity values from our measurement study and
10% link sharing probability inside any spoke domain. The num-
ber of such users increases with the topology size as the number
of highly loaded links increases. However, the overall percentage
of unsatisfied users never exceeds 6% in all three algorithms. The
particular topology under this study consists of a hub network of
5 routers, each with an average of 20 spoke domains and a spoke
degree of 3, without any multihoming links. Greedy seems to be
the most error resilient since it places more cache servers in the
network and thus has fewer loaded links. Inherently, all three al-
gorithms are vulnerable to inaccurate input data, because attempt-
ing to reduce the number of caches inherently increases bandwidth
utilization. For each algorithm, the maximum link utilization is
usually close to 99%.

5.3.2 Robustness improvement
One possible way to deal with the imperfect topology informa-

tion is to always leave some spare bandwidth on each link or on
links where we suspect our capacity estimation is incorrect. We
implemented this heuristic and only let our algorithms use 80% of
the estimated link capacity. Note that underestimating the link ca-
pacity will result in more caches being used, in this case roughly
30% more. On the other hand, the number of unsatisfied users,
while continuing to grow with topology size, is substantially re-
duced, as can be observed in Figure 12. Our evaluation also makes
a compelling case that we need measurement information or ex-
ternal knowledge on where links are most likely shared and where

9

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

number of routers

av
er

ag
e

nu
m

be
r

of
 u

ns
at

is
fie

d
us

er
s

greedy
router−based redirection
client−based redirection

Figure 12: Evaluation of robustness heuristics to imperfect
topology data

capacity estimates are not accurate. Given such information, we
can selectively avoid overloading these links in the algorithms.

6. CONCLUSION
In this paper, we study the problem of placing cache servers in

VPNs to provision for unicast based video streaming events. Our
goal is to satisfy a given client population with the minimal number
of cache servers. Given the bound on the number of cache servers,
we add the additional goal of placing them in such a way as to min-
imize the total bandwidth usage. We developed provably optimal
algorithms to achieve both goals using an interception cache server
based solution. In addition, we prove that the problem is NP-hard
in general. We then develop a set of simple and efficient heuristics
to provide reasonable solutions to the cache placement problem if
non-interception based redirection is used. Each of these solutions
provide additional improvement in cache reduction at the expense
of increased implementation cost compared to interception based
redirection.

In addition to those theoretical results we performed extensive
simulations to evaluate the performance of our algorithms in real-
istic settings. We discovered in particular that if non-interception
based redirection systems are used, the number of caches can be
reduced by more than 27% using our heuristics compared to the
greedy strategy for interception based redirection. Additionally, in
large networks, if redirection is based on individual client IP ad-
dresses, our heuristics reduce the number of caches by 17% com-
pared to the case where redirection is based on the router or the
entire IP prefix ranges. If technologies such MPLS is available to
perform source routing, we show a flow-based algorithm can im-
prove up to 40% in the number of caches and is very close to the
actual optimal.

For future work, we intend to verify our algorithms by imple-
menting it within a large VPN. We also plan to evaluate the robust-
ness of flow-based algorithm in presence of inaccurate input data
and more thoroughly study the benefit in bandwidth saving using
our proposed dynamic programming algorithm.

Acknowledgments
We thank Michael Rabinovich and Hoi-Sheung Wilson So for their
valuable comments on drafts of the paper. Thanks to Shubho Sen
for helpful discussions. We also thank Andrew Goldberg for mak-
ing the maxflow software available and Mauricio Resende for help
on the software. We are grateful to Chris Chase for the discussion
on the types of VPNs.

7. REFERENCES
[1] GT-ITM: Georgia Tech Internetwork Topology Models.

http://www.cc.gatech.edu/projects/gtitm/.
[2] A. Barbir, B. Cain, F. Douglis, M. Green, M. Hofmann,

R. Nair, D. Potter, and O. Spatscheck. Known CN
Request-Routing Mechanisms .
http://www.ietf.org/internet-drafts/
draft-ietf-cdi-known-request-routin%
g-01.txt.

[3] M Cieslak, D Forster, G Tiwana, and R Wilson. Web Cache
Coordination Protocol V2.0. http://www.wrec.org/
Drafts/draft-wilson-wrec-wccp-v2-00.txt.

[4] Michael R. Garey and David S. Johnson. Computers and
Intractability. W.H. Freeman and Company, 1979.

[5] Sugih Jamin, Cheng Jin, Anthony Kurc, Yuval Shavitt, and
Danny Raz. Constrained Mirror Placement on the Internet. In
Proceedings of IEEE Infocom, April 2001.

[6] J. Kangasharju, J. W. Roberts, and K. W. Ross. Object
replication strategies in content distribution networks. In 6th
International Web Content Caching and Distribution
Workshop, June 2001.

[7] Magnus Karlsson, Christos Karamaolis, and Mallik
Mahalingam. A framework for evaluating replica placement
algorithms. http://www.hpl.hp.com/personal/
Magnus_Karlsson/papers/rp_framework.pdf,
2002.

[8] Magnus Karlsson and Mallik Mahalingam. Do We Need
Replica Placement Algorithms in Content Delivery
Networks? In Proceeding of 7th International Web Content
Caching and Distribution Workshop, August 2002.

[9] Donald E. Knuth. The Stanford GraphBase.
Addison-Wesley, 1993.

[10] B. Krishnamurthy, C. Wills, and Y. Zhang. On the Use and
Performance of Content Distribution Networks. In Proc.
ACM SIGCOMM Internet Measurement Workshop
(IMW’2001).

[11] Bo Li, Mordecai J. Golin, Giuseppe F. Italiano, Xin Deng,
and Kazem Sohraby. On the Optimal Placement of Web
Proxies in the Internet. In Proceedings of INFOCOM, 1999.

[12] Lili Qiu, Venkata N. Padmanabhan, and Geoffrey M.
Voelker. On the Placement of Web Server Replicas. In
Proceedings of INFOCOM, April 2001.

[13] Sherlia Shi and Jonathan Turner. Placing servers in overlay
networks. In Symposium on Performance Evaluation of
Computer and Telecommunication Systems (SPETS), July
2002.

10

