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ABSTRACT
This paper proposes a detection mechanism called DCAP for a net-
work provider to monitor incoming traffic and identify misbehav-
ing flows without having to keep per-flow accounting at any of its
routers. Misbehaving flows refer to flows that exceed their stipu-
lated bandwidth limit. Through collaborative aggregate policing at
both ingress and egress nodes, DCAP is able to quickly narrow the
search to a candidate group that contains the misbehaving flows,
and eventually identify the individual culprits. In comparison to
per-flow policing, the amount of state maintained at an edge router
is reduced from O(n) to O(

√
n), where n is the number of ad-

mitted flows. Simulation results show that DCAP can successfully
detect a majority (64-83%) of the misbehaving flows with almost
zero false alarms. Packet losses suffered by innocent flows due to
undetected misbehaving activity are insignificant (0.02-0.9%). We
also successfully build a prototype that demonstrates how DCAP
can be deployed with minimal processing overhead in a soft-QoS
architecture.

Keywords
Misbehaving flow detection, Traffic policing, Flow-level account-
ing

1. INTRODUCTION
Considerable research has focused on extending the Internet archi-
tecture beyond best-effort to provide different classes of services to
different applications depending on their Quality of Service (QoS)
requirements. Existing proposals range from per-flow mechanisms
such as IntServ [11] and RSVP [8] to per-class mechanisms such
as Diff-Serv [7] and Clearing Houses [10].

Two integral components of any QoS architecture are: admission
control and traffic policing [11]. These two components, in combi-
nation with appropriate QoS scheduling policies, enable a network
provider to dynamically allocate its shared resources to various cus-
tomers and satisfy their QoS requirements. While admission con-

trol limits the number of flows in the system to avoid depletion of
resources, traffic policing is responsible for ensuring that the ad-
mitted flows use only their allocated share of network resources.

In this paper, we focus on the traffic policing component and ad-
dress the question of how a network provider can effectively detect
misbehaving flows with minimal overhead. We define a flow to be
misbehaving if it generates traffic in excess to its allocated share. It
is crucial to detect and penalize misbehaving flows because they
can potentially starve other flows sharing the same physical re-
sources, resulting in degraded performance for legitimate flows.
We make two simple assumptions: First, the only resource under
contention between the flows is the network bandwidth. Second,
we use a predictive service model where a source specifies its band-
width requirement (during admission control) based on its average
rate.

The traditional approach to traffic policing in the context of IntServ,
Diff-Serv and ATM networks, is to monitor every admitted flow at
the routers [9, 15, 35]. Per-flow policing may incur significant pro-
cessing overhead at the routers (O(n) where n is the number of
flows) resulting in poor scalability. To partially alleviate the prob-
lem, the policing can be completely shifted to the edge of an ISP’s
network.

In this paper, we present an alternative to per-flow policing which
trades off detection accuracy for increased scalability. Detection
accuracy refers to the probability of detecting misbehaving flows
at a router. We propose an aggregate policing mechanism, called
DCAP (Detection via Collaborative Aggregate Policing), that has
both a good misbehaving flow detection probability and a reduced
state and overhead at the routers. DCAP works well under the as-
sumption that the number of misbehaving flows is small compared
to the total number of flows in the system. We thereby discount
the state required for containing misbehaving flows after they are
detected from our analysis.

1.1 Paper Contributions and Overview
In this paper, we propose a detection system, Detection via Collab-
orative Aggregate Policing (DCAP), that allows a network provider1

to continuously monitor admitted traffic and detect misbehaving
flows in an efficient and scalable manner. The design of DCAP is

1A network provider refers to a backbone or regional Internet Ser-
vice Provider (ISP) that administers its own network domain and
provides Internet access to individual and corporate customers or
smaller service providers.



driven by three goals: (a) to protect the well-behaved flows against
resource depletion due to misbehaving flows, (b) to identify and
eventually penalize the misbehaving flows, and (c) to achieve ro-
bustness with respect to noise conditions and errors in workload
modeling.

Our main contribution is to show how one can leverage distributed,
aggregate policing at edge routers to quickly identify a group that
contains the misbehaving flows. The problem can then be simpli-
fied into measuring only the flows within this “candidate” group.
The principal observation is that it is relatively harmless to have
delay in detecting a misbehaving flow when the overall load is rel-
atively low due to statistical multiplexing. This motivates our ap-
proach to aggregate multiple flows for group policing, which elim-
inates per-flow state management at edge routers. We propose an
explicit Flow-Identifier (Fid) assignment scheme to group the ad-
mitted flows and police the aggregate group. The fact that each
edge router maintains only the aggregate state for each group is
crucial for the reduction of state from O(n), which would be re-
quired if each flow were policed individually, to O(

√
n), where n

is the number of admitted flows. Aggregate policing also reduces
the per-packet processing overhead. In addition, aggregate policing
is more robust to noise conditions and variations of a flow’s rate.
This is because, the aggregate rate of flows in a group has a much
lesser variance (as a fraction of the net aggregate rate) in compari-
son to the average variance of the rate of a flow (as a fraction of the
flow’s rate) in the group.

We analyze the performance of DCAP through simulations and
characterize the trade-offs between different performance criteria
by tuning various parameters of DCAP. Results show that DCAP
can detect a majority of misbehaving flows with close to zero false-
alarms and low detection time for a variety of source models. We
also demonstrate the practicality of our scheme by prototyping our
algorithm using a Click router [25].

The rest of the paper is organized as follows. In Section 2, we
formulate the tracking of misbehaving flow as an on-line change
detection problem, in which one needs to detect the occurrence of
misbehaving behavior as soon as possible, but with a low rate of
false alarms. We discuss related work in Section 2.2. Section 3
describes the Fid assignment, aggregate policing and misbehaving
flow detection scheme within DCAP in details. In Section 4, we
illustrate how DCAP can be applied to three different scenarios:
(a) within a single ISP, (b) in an overlay network, and (c) across
multiple ISPs. We explain our evaluation methodology and present
our simulations results in Section 5. Section 6 illustrates the opera-
tion of DCAP through a proof-of-concept prototype built on top of
a Click router [25]. The prototype demonstrates that the process-
ing overhead introduced by DCAP at an edge router is insignificant.
Section 7 summarizes key results and addresses several deployment
issues.

2. MISBEHAVING FLOW DETECTION
During admission control, a service contract is negotiated between
the service provider and the user. The service contract describes the
type and amount of traffic sent by the user, and the expected perfor-
mance offered by the network provider. A key component required
to enforce service contracts is a mechanism to detect misbehaving
flows that fail to comply with the allocated rate specified in their
service contracts. In this section, we will formulate the misbehav-
ing flow detection problem and discuss previous approaches to this
problem.

2.1 Problem Formulation
Misbehaving flow detection (MFD) is an example of on-line change
detection problems [6], in which one needs to detect the occur-
rence of abnormal traffic behavior as soon as possible, with a set of
constraints, e.g., without exceeding the tolerable number of false
alarms. A false alarm happens when a flow is detected as mis-
behaving when it is not. Let n be the number of incoming flows
fi(s, d) between a specific ingress-egress pair (s, d), each with an
allocated rate of Ai(s, d), and m be the number of non-complying
flows, where m ≤ n. The problem is to correctly identify as many
of these m flows as possible, i.e., to maximize the probability of
successful detection. The three intuitive performance metrics for
evaluating an MFD scheme are:

1. probability of successful detection, Psd (i.e., a misbehaving
flow is not detected),

2. probability of false alarms, Pfa (i.e., a flow is detected as
misbehaving when it is not), and

3. time to detect, tdelay

Since the main goal of service contract enforcement is to deliver
end-to-end QoS assurance to all admitted flows, the most impor-
tant criteria is to protect the well-behaved flows that use legitimate
amount of resources against misbehaving behavior. We quantify
how well the performance of well-behaved flows is preserved in
terms of Pmis, the probability of dropped packets from the comply-
ing flows. Identifying the misbehaving flow itself is secondary, as
long as the impact from undetected flows’ activities on other well-
behaved flows, i.e., Pmis, is negligible. When the overall load is
relatively low, misbehaving flows can be harmless even if they are
not identified. On the other hand, false alarms may seriously de-
grade the performance of good flows. Therefore, we can tolerate
low Psd but Pfa should be close to zero.

In summary, an ideal MFD algorithm with the goal of enforcing
service contract should achieve the following (in the order of im-
portance):

1. minimum Pfa,
2. minimum Pmis,
3. maximum possible successful detection probability, Psd, and
4. small tdelay,

2.2 Previous Approaches
We make the distinction between two different types of traffic polic-
ing:

• profile-based: The traffic profile of all the flows being po-
liced is known to the router implementing the policing mech-
anism.

• profile-less: The router has no knowledge of the traffic char-
acteristics of the individual flows.

Our problem falls under the domain of profile-based policing since
we have prior knowledge of the allocated rates of the individual
flows. We will briefly describe the associated related work for both
types of traffic policing.

2.2.1 Profile-based policing
The traffic profile of a flow describes the characteristics of the traf-
fic generated by the flow (e.g. peak rate, average rate etc.). Any



profile-based policing mechanism is associated with the goal of
identifying flows that violate their specified traffic profiles. profile-
based policing is normally used in the context of QoS architecture
to detect malicious flows (flows that transmit more than their re-
served rate as specified in their traffic profile). The most common
example of profile-based policing is Token Bucket Filter (TBF) [9],
a per-flow policing algorithm which ensures that every flow adheres
to its traffic profile. Per-flow policing has been used in the context
of IntServ [31], DiffServ [15, 35] and ATM [4, 29, 9] networks.
While per-flow policing provides the most accurate accounting in-
formation, the required state complexity maintained at each edge
router grows linearly with the number of flows, n. Maintaining a
counter to measure the traffic sent by millions of concurrent flows
in the future will be too expensive (using SRAM) or slow (using
DRAM) [14]. Current state of the art policing tools like Cisco’s
Netflow [1] periodically sample packets and may be too slow, in-
accurate and memory intensive. Hence per-flow state maintenance
may hinder scalability in future high-bandwidth networks.

Machiraju et al. [26] have suggested an alternative approach where
the traffic profile is maintained in the packets rather than the routers
themselves. This approach uses the Dynamic Packet State(DPS)
concept proposed in [33]. Along with the profile, the service provider
also provides a certificate during the admission control phase that
acts as a proof to ensure that the end-host does not cheat by modify-
ing its traffic profile. Though this approach removes the necessity
of maintaining per-flow state at the routers, it does require a modi-
fication of the behavior of end-hosts and the packet header format.

2.2.2 Profile-less policing
Profile-less policing attempts to achieve fairness amongst flows
traversing a router and distributes the available bandwidth fairly
amongst the individual flows. The most common examples of profile-
less policing are the fair queuing algorithms. While many of these
algorithms like Weighted Fair Queuing (WFQ) [12, 27, 28] main-
tain per-flow state at the individual routers to enforce fairness, ac-
tive queue management techniques like Stochastic Fair Blue (SFB)
[17] achieve approximate fairness using minimal per-flow state.
SFB is derived from a queue management technique BLUE [18]
proposed as an alternative to the RED queuing discipline for early
detection of congestion. SFB provides a scalable way to identify
and rate-limit non-responsive flows using BLUE, which marks or
drops packets based on loss rate and link utilization history.

Estan et al. [14] use a SFB-like approach to identify and provide ac-
curate traffic statistics for the heavy-hitters, i.e., elephant flows that
contribute to most the majority of the traffic on a specific router
interface. Though we would classify this work under profile-less
policing, this technique could be useful for detecting malicious
flows that are also heavy-hitters and consume a lot of extra band-
width.

3. OUR APPROACH: DCAP
In this section, we will describe our solution, Detection via Col-
laborative Aggregate Policing (DCAP), for the misbehaving flow
detection problem.

To reduce the processing and state complexity of per-flow policing,
we propose to aggregate flows for group policing. In this process,
we do sacrifice a certain level of accuracy in tracking flows’ behav-
ior. Aggregate policing allows us to detect a group that contains
the misbehaving flows. The problem can then be simplified into
measuring only the flows within this smaller “candidate” group.

However, we still need to preserve the uniqueness of each flow to
be able to identify a misbehaving flow eventually. To achieve this,
each admitted flow is assigned a flow-identifier, Fid, which is then
inserted in the packet header. We assume an application proxy on
the client side will be configured to insert the proper Fids before
forwarding the packets to the edge router.

A few questions remain to be addressed:

1. How are flows assigned into groups?
2. Can an Fid be devised to represent both the flow itself and

the groups it is in?
3. How does one combine various aggregate policers to effec-

tively identify misbehaving flows?

In the following two sections, we describe the mechanisms of our
scheme, DCAP, that address theses issues.

3.1 Fid Assignment
There are several possible ways to identify flows, and assign them
into different bins for aggregate policing. One simple way is to
assign each flow with a random identifier, Fid, which does not
require a central database to keep track of which Fids have been
assigned. This approach comes with two disadvantages. First, po-
tential Fid collisions (if the number of unique Fids is small) will
make it impossible to identify unique flow. Secondly, there is a lack
of control and flexibility over how flows are aggregated together.
Ideally, we would like to assign flows with similar bandwidth re-
quirements and characteristics into the same group for policing.

3.1.1 Fid Assignment and Releasing in DCAP
We introduce the notion of a Resource Manager that explicitly as-
signs Fids to flows. The Resource Manager (RM) is a logical unit
that can be physically placed at the fault monitoring point or pol-
icy server in an ISP2. The RM maintains the repository of admitted
flows, their traffic profiles and service contracts for accounting pur-
poses. Only aggregate states of the reservations are maintained at
the edge routers (to both reduce the state and the overhead of polic-
ing).

We make two observations. First, though we maintain per-flow
state at the RM, this state is accessed infrequently for verification
purposes. Hence, the communication between the edge routers and
the RM is relatively infrequent. Second, the RM, a single logi-
cal unit, in practice is implemented in a distributed fashion across
different POPs in an ISP (refer to Section 3.3.1 for more details).
Therefore the RM is not a single point of failure.

Every Fid consists of two 16-bit sub-fields: FidIn and FidEg.
All flows that enter or exit at a particular ER are aggregated into
different groups based on their Fids. The FidIn and FidEg sub-
fields of a flow identify the groups that the flow belongs to at its
ingress and egress ER, respectively. In other words, each of the
subfields (FidIn and FidEg) serves as group identifiers, while
together they form a Fid that uniquely identifies a single flow. Be-
fore an Fid is allocated to a flow, the RM has to check whether the
Fid has been previously assigned to avoid accidental re-use of the
same Fid.

2The Resource Manager (RM) should be located very close to the
collection of edge routers within a given point of presence(POP).
The RM can be implemented as in a distributed manner such that
every POP is associated with a local RM (Section 3.3.1).
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Figure 1: Illustrations: (a) Fid assignments, and (b) aggregate
policing at ingress and egress routers.

Each edge router ERi a set of M unique group identifiers, denoted
as Ai = {xi1, xi2, . . . , xiM}, where each member is a 16-bit bi-
nary number and is unique across the set Ai. The sets Ai and Aj

associated with any two ERi and ERj are mutually disjoint.

Any Fid of an admitted flow should satisfy the following proper-
ties:

1. If the flow is routed from ERs to ERd, then FidIn ∈ As,
and FidEg ∈ Ad.

2. No other flow should have the same Fid.
3. Flows with the same FidIn (or FidEg) have similar band-

width requirements.

When a new flow from ERs to ERd is admitted, the RM picks a
random xs from As and a random yd from Ad such that the Fid
with FidIn = xs and FidEg = yd satisfies the above properties.
This Fid is assigned to the flow, and a new entry with this Fid and
its allocated bandwidth is added to the Fid-Repository (FR). The to-
tal number of flows that can be uniquely identified in this scheme is
K ·M2 for a particular ingress ER, where K is the total number of
potential egress ERs, each having its own unique set of identifiers.
We assume the admitted flow will send a TEARDOWN message
to the ingress ER when it terminates. The TEARDOWN message
contains the Fid, and its allocated bandwidth. Upon receiving the
TEARDOWN message, the RM updates the FR accordingly and
releases the Fid.

In the example shown in Figure 1, a new flow that arrives at ingress
router ERs is assigned an Fid with the first subfield, FidIn equals
to x, and FidEg equals y. At ERs, the new flow is aggregated
with other flows with the same subfield, FidIn = x, for group
policing. At ERd, this flow is grouped with other flows with FidEg
= y for policing. Every flow will be policed at both its ingress and
egress ER in two distinct groups, thereby increasing the chances
of detecting misbehaving flows. Every ER maintains only the ag-

gregate state for each group and hence does not store any per-flow
state.

3.1.2 Explicitly Assigned vs User-Selected Fids
In our approach, we attempt to maximize the level of flow aggrega-
tion without compromising the uniqueness of Fids, thereby mini-
mizing the number of groups to be policed at every edge router(ER).
Explicit assignment has two distinct advantages: First, the amount
of aggregate policing needed to be performed at the router can dras-
tically be reduced. For example, if there are n flows from an ingress
ER to a specific egress ER, an optimal assignment of explicit Fids
can be achieved by maintaining only

√
n groups at each of the two

routers. We discuss this optimal assignment in the next section.
Secondly, flows with similar bandwidth requirements can be aggre-
gated into a common group to increase the effectiveness of group
policing. It reduces the chances of a small bandwidth misbehaving
flow hiding in an aggregate containing some large bandwidth flows.
This is because it becomes hard to distinguish minor variations of
a large bandwidth flow from large-scale bandwidth violations of a
small bandwidth flow.

On the other hand, if flows were allowed to assume their own Fids,
then it would be necessary to maintain a membership function to
map the random Fids to a particular group. The cost of performing
an online grouping of flows based on these functions would be very
high because the Fids are continuously changing. Techniques like
Stochastic Fair Blue (SFB) [18] that use random hash functions
cannot be applied because they do not provide an inverse mapping
from group identifiers to actual Fids. Thus, using SFB alone does
not provide a direct mechanism to verify whether a suspected flow
is truly misbehaving.

3.1.3 Other Challenges
Routing Changes: When a routing change occurs and causes an
active flow to change its ingress or egress points, the previously
assigned Fid may not match the group identifiers in one of the
new ERs or both. Whenever this happens, we can either

1. remark the packets of this flow as best-effort, or
2. contact the RM for re-admission of this flow with the new

endpoints.

Further investigation is needed to understand the performance and
security issues of both approaches.

Meeting Fid Demands: The typical number of simultaneous flows
observed on an ingress link is between 300 and 5000 [19]. It is ex-
pected that 5-10% of these will be latency sensitive applications
and need Fids. Even if the demand for Fids increases 10 times in
future, we need at most M =

√
5000, which is roughly 71 unique

identifiers per A set. Based on the discussion in [32], the total
number of ERs within an ISP, K, is in the order of 500.3 There-
fore, the total number of unique identifiers required for the whole
ISP (M × K) is roughly 35,500 in this case. Allocating 16-bits
(216 = 65536) for each subfield should be more than sufficient for
producing mutually disjoint Ai for all routers.

Security Concerns with identifiers: One important security con-
cern with our Fid assignment is the notion of bogus identifiers.

3K=number of POPs × number of ERs/pop. Major Tier-1 ISPs
has about 25 POPs in the continental USA and each POP consists
of a few core routers and 10-20 gateway routers.
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Figure 2: Control blocks of DCAP.

An external misbehaving user/application may attempt to create
its own bogus Fid which is valid but has not been explicitly as-
signed by the RM and generate a flow with such an identifier. One
possible way of dealing with bogus identifiers is to use the no-
tion of one-way trapdoor functions. A function f() is said to be
a one-way trapdoor function if it is one-one and easy to compute
while f−1() should be very hard to compute unless given a trap-
door [20]. The classic example of a one-way trapdoor function
is public-key cryptography. Let us assume that the RM and the
ERs within one ISP know a one-way function f() with its corre-
sponding trapdoor, t (not known to the external world). If a flow
is supposed to be allocated an identifier, Fid = FidIn, F idEg,
the actual identifier explicitly assigned to it will be f(Fid) as op-
posed to just Fid. Upon receiving a packet with a flow identifier,
x, the edge router first computes f−1(x) to find the correspond-
ing ingress/egress group identifiers. Since one-way trapdoor func-
tions are very hard to break, this can prevent the problem of bo-
gus identifiers. To avoid replay attacks (using previously specified
identifiers), we can just continuously modify the group identifiers
at all edge routers. However, there are two basic problems with
this approach: (a) computing f−1 may sometimes be an expensive
operation especially if public-keys are used. (b) 32-bits in a flow
identifier may be insufficient to perform these operations. A de-
tailed analysis of security concerns of our approach is outside the
scope of this paper.

3.2 DCAP: Detection via Collaborative Ag-
gregate Policing

DCAP is mainly designed for detecting a small number of misbe-
having flows among a large group of admitted flows. There are
three stages in the detection process:

• Perform aggregate policing at both ingress and egress routers
to quickly identify a subgroup that contains the misbehaving
flows,

• Guess candidate flows within the group that violate aggregate

bandwidth allocation via sampling within a specified time
window, and

• Verify whether these flows are truly misbehaving.

Figure 2 highlights the major control blocks of DCAP. The remain-
ing of this section discusses the technical details of each detection
phase and example pseudo-codes are included in Figure 3.

3.2.1 Aggregate Policing
DCAP deploys traffic policer (TPs) at both ingress and egress ERs
for policing the traffic from admitted flows with the matching group
identifiers (FidIn or FidEg). Each TP is a collection of continuous-
state Token Bucket Filters (TBF) [9, 36, 30]). A TBF consists of a
counter, which is incremented by the size of each arriving packet,
and decrements periodically by a specific rate, as long as the value
of the counter is positive. Every group identifier, x ∈ Ai, is asso-
ciated with a TBF with two parameters, rtot and btot, where rtot is
the total average rate of admitted flows and btot is the total burst
size. When a new flow between ERs and ERd with allocated
bandwidth Anew is admitted and assigned an Fid, the RM updates
the TPs at both ingress and egress routers. The total acceptable rate
rtot for the TBF with the matching FidIn and FidEg (at ERs

and ERd, respectively) is increased by Anew. Packets that violate
the associated traffic profile are discarded. Each TP keeps track of
the dropped packets and reports the statistics to the RM.

Since the policing at the TP is performed on a group of flows shar-
ing the same 16-bit subfield of Fid, the amount of state information
maintained at the ingress ER is proportional to M , the number of
unique identifiers in the set, A. Consider an example ISP domain
with K edge routers and M=100. Each ER maintains only 100
pieces of state information, but an arbitrary router can admit up to
K × 10, 000 flows with unique Fids. A per-flow policing scheme
would have require each ER to maintain all K × 10, 000 states.

3.2.2 Providing Best Guesses



// pseudo-code excuted by ingress router
PROCEDURE ADC(RECV)
//called when a RECV message arrives

(A, s ,d) = read(RECV)
// get the allocated rate, A, ingress and egress point, s and d
if (measured load < bottleneck link capacity):

(FidIn, FidEg) = get_Fid()
// get unique Fid from RM
r_tot(FidIn) = r_tot(FidIn) + A
//update TBF w/ FidIn with allocated rate, A
update(d, A)
//contact egress router d, to update TBF w/ FidEg

// pseudo-code executed by ingress and egress router
PROCEDURE MONITOR()

for each k in TBF_LIST:
if tot_arrival[k] > r_tot[k]:

send_ALARM(identifier[k])
MICRO(k)
//if TBF k overflows, send ALARM to RM
//enter micro-policing mode

PROCEDURE MICRO(k)
for each flow in TBF[k]:

m[flow] =  sample_rate
list = find_top5_flows()
//list[flow]=(Fid of flow, measured rate of flow)
send_RM(list)

// pseudo-code executed by the Resource Manager
PROCEDURE VERIFY(list)

for each flow in list:
if m_flow > (1 + e) A_flow:

penalize(flow)

Figure 3: Pseudo-codes for DCAP mechanisms.

As an example, let a flow with Fid = [f, g] be misbehaving. All
flows with the same FidIn = f will be policed as an aggregate
in the same Token Bucket at the ingress ER, TPs, regardless of
what their FidEg is. If the total allocated rate of FidIn = f is
violated, the affected TP reports f to the RM using an ALARM
message (Figure 2). However, this information alone is insufficient
for pinpointing the exact misbehaving flow, because there can be as
many as K · M flows with the same FidIn that could potentially
be misbehaving. If the TP at an egress ER FidEg = g also sends
an ALARM message, the RM guesses that a flow with Fid that
contains both f and g as its subfield is misbehaving, and submits
this Fid for verification.

However, a misbehaving flow may not always be detected at both
its ingress and egress ERs. To improve the effectiveness of DCAP,
we introduce a “micro-sampling” mode. Whenever a group TBF
that violates the aggregate rate is identified, DCAP requires the
edge routers to sample individual flows within this group for a dura-
tion of tmp. At the end of this period, the associated ER identifies
nmp largest flows, and report their Fids, along with the sampled
rate, to the RM. Normally the potentially misbehaving flows are
the ones that transmit at a much higher rate relative to other mem-
bers.

In this paper, we consider tmp= 5 seconds and nmp= 5 for perfor-
mance evaluation. With the assumption that the number of misbe-
having flows is relatively small, nmp=5 is reasonable, as shown in
the ns simulations (Section 5). However, fixing a value of nmp does
have its disadvantage. It limits the efficacy of the micro-policing in
two scenarios: (a) if the number of large flows is greater than nmp,
and (b) if many small misbehaving flows are hiding in the aggre-
gate after discounting the nmp large flows. An alternative solution
is to report all the flows that are “disproportionally” larger than the
rest in the group. We can leverage the fact that flows with similar
bandwidth are aggregated for policing in the same group to com-

pute the relative “size” of the flows as the following. Let rtot be
the allocated bandwidth to a traffic aggregate that has n admitted
flows. We estimate the bandwidth requirement of individual flows
as rtot/n. All the flows with the sampled rate exceeding rtot/n
by a large margin (say 5%) are potentially misbehaving and will be
reported to RM.

3.2.3 Verifying Misbehaving Behavior
For each reported flow with Fid = [x, y], the RM compares the
allocated rate, A(x, y) with the measured rate m(x, y) reported in
the ALARM message:

m(x, y) < (1 + ε) · A(x, y) (1)

where ε is a hysteresis parameter to absorb transient behavior of
bursty traffic. If the condition in (1) is violated, the flow is con-
sidered misbehaving. ε is typically between 0 and 0.05. A counter
associated with this flow is incremented for every such violation of
condition (1). To reduce the probability of false alarm, we intro-
duce a second hysteresis parameter, η, which determines the min-
imum number of violations before a flow is reported as misbehav-
ing. A reasonable range for η is between one and five.

3.2.4 Hiding in the Aggregate
Although group policing allows our architecture to scale, it limits
the effectiveness of DCAP because a misbehaving flow can “hide”
in the aggregate. This can happen when:

• the aggregate usage of the group is less than the total allo-
cated rate because certain flows are under-utilizing their re-
sources, and

• The misbehaving flow is relatively small compared to other
larger, yet legitimate, flows in a misbehaving group.

To address this problem, we introduce redundancy by deploying a
traffic policer at every egress point as well. By assigning a unique
Fid to every flow, we ensure that no two flows are in the same
group in both the associated ingress and egress ERs. Essentially
every flow is policed in the aggregate at two distinct points to max-
imize the number of misbehaving flows that are detected. Secondly,
we assign flows with similar bandwidth requirement into the same
group (Property 3 of Fids in Section 3.1.1).

3.3 Other Issues
3.3.1 Implementation of the Resource Manager
Although the Resource Manager (RM) is described as a single log-
ical entity within a domain, it can be implemented as a distributed
architecture across POPs. Every POP of an ISP usually has a fault
monitoring facility to continuously manage the link and router sta-
tus in its network. The additional functions of the RM can be im-
plemented as additional pieces of software that reside in these mon-
itoring facilities. For example, a local-RM of a POP can maintain
part of the domain’s database, by tracking Fids where at least one
of the FidIn or FidEg is a valid group identifier of an edge router
within the same POP. For every flow that is admitted, a new entry
with its Fid and allocated bandwidth is created in the partial FR
databases at both its ingress and egress POPs. Similarly, when a
flow stops, we remove the flow’s entry from the local RMs in its
ingress and egress POPs, respectively.



An alternative model for building a Resource Manager would be to
just distribute the state amongst the edge routers as opposed to ag-
gregating it at specific monitoring points within a POP. This alter-
native model is mainly applicable outside the realm of ISPs where
we cannot assume the presence of any POP structure. (refer to sec-
tion 4.2, for the applicability of this model and DCAP for overlay
networks)

While the alternative model may no longer have the state reduction
property of DCAP (i.e. the nodes will maintain per-flow state),
the nodes still need to perform only aggregate policing. This is
because, the active state at a node (state used for policing flows
on a per-packet basis) is still the aggregate state while the per-flow
state is accessed less frequently.

3.3.2 Penalizing Misbehaving Flows
Once a misbehaving flow is detected, several penalty actions can be
taken against it: e.g., dropping all the packets of this flow, demoting
all its packets to best-effort, or charging more for the connection.
Such a penalty would require keeping some state information at the
edge router, but only for a very small subset of flows that misbehave
(assuming the number of misbehaving flows is small). Our frame-
work can support any of these penalty actions, but for simplicity,
we choose packet dropping as the default. We will not address the
impact of different penalty actions in detail, since the main focus
of this paper is the design of a scalable detection system to identify
and isolate these malicious flows. We also do not consider the ad-
ditional state incurred for containing the malicious flows after they
are identified.

4. APPLICABILITY OF DCAP
In the previous section, we described our solution to the malicious
flow detection within one ISP’s network. In this section, we will de-
scribe different scenarios under which our solution can be applied.
In particular, we will consider 3 specific scenarios: (a) Single ISP
scenario, (b) Policing in Overlay Networks, (c) End-to-end flows
traversing multiple ISPs.

Until now, we have been vague about the definition of a flow. The
notion of a flow in our work can be more generic than just an end-
to-end connection between two end-hosts. DCAP places three con-
straints on the definition of a flow:

1. Every flow is associated with a unique flow-identifier as spec-
ified by an ISP (refer to Section 3.1 for more details). At a
router, all packets with the same flow-identifier belong to one
flow.

2. All packets of a flow are associated with the same ingress
and egress routers within the ISP’s network.

3. If multiple end-to-end connections have the same QoS re-
quirements and share the same intra-domain path between a
specific pair of ingress and egress routers, they can be treated
as a single flow if the connections originate from the same
customer that is accountable for billing purposes (from an
ISP’s perspective).

4.1 Single ISP Scenario
We will now use the generality in the definition of a flow to show
how DCAP can be used for policing within an ISP. Service Level
Agreements(SLAs) offered by one ISP to another is normally a
complicated agreement, which is carefully worded to address dif-
ferent aspects of performance(latency, bandwidth, loss) at a very

ISP YISP X

ISP C

ISP B

ISP A

(Fid, b/w, A)

Figure 4: Supporting Dynamic SLAs between ISPs

coarse granularity. A sample SLA document of a popular ISP is
available online [3]. These SLAs are normally static and negotiated
on a monthly/yearly basis rather than on very small time granulari-
ties.

An ISP can offer to provide transit service between two of its neigh-
boring ISPs. In the simplest case, the transit ISP statically provi-
sions a certain amount of bandwidth between its two neighbors.
DCAP provides a scalable way of extending this notion of SLAs to
a dynamic reservation model within one ISP without making much
modifications to the existing Internet architecture. Figure 4 illus-
trates a simple scenario where ISP Y has four neighbors A,B,C,X.
ISP Y can dynamically provision a certain amount of bandwidth b
from ISP X to ISP A and present the edge router of ISP X with an
Fid and a corresponding bandwidth b. ISP X can potentially insert
this Fid to any packet destined for ISP A (which can be directly
determined from the BGP tables in ISP X4). Similarly, ISP Y can
potentially offer many such Fids of varying bandwidths dynami-
cally to ISP X for each of its other neighbors A,B,C.

DCAP provides a scalable policing model to ensure that the neigh-
boring ISPs do not violate their SLA agreements. However one
may think that such a system can be deployed by simply using
a per-flow or a single aggregate policing model. We argue that
DCAP provides two distinct advantages over both cases in this sce-
nario. First, certain tier-1 ISPs have around N = 500 − 2000
ISPs as neighbors. In the worst case scenario, if each pair of these
ISPs (N × N − 1) setup an SLA through their common neighbor,
per-flow policing may not be a scalable option. Second, between
a pair of neighboring ISPs(say X and A), it may be beneficial for
ISP Y to handle multiple Fids of varying bandwidths rather than a
single Fid of a certain aggregate rate. This offers ISP X the addi-
tional flexibility of partitioning these Fids offered by Y amongst
its different customers.

4.2 Overlay QoS Provider Scenario
OverQoS [34] and Service Overlay Networks [13] are two recent
proposals to provide some form of end-to-end QoS guarantees us-
ing an overlay network. These architectures enable a third-party to
set up an overlay network and offer customers coarse-level band-
width guarantees. Traffic policing is also an integral component of
these architectures.

The fundamental reason why DCAP would be appropriate for such
overlay architectures stems from the assumption that the entire over-

4If Y peers with A at multiple locations, the traffic from X to A
needs to be diverted along a single egress point of Y to preserve the
semantics of a flow.



lay is owned by a single administrator. To deploy DCAP, we as-
sume that every overlay node could be a potential egress point and
the Fid allocation is based on the ingress and egress points (en-
try and exit points within the overlay) of a QoS flow. Here, a flow
could either represent a single end-to-end connection or an aggre-
gate pipe for a customer. However, we make one assumption: The
ingress and egress overlay node remain the same during the course
of a flow. This assumption definitely holds for at least the ingress
node since a typical deployment strategy for many overlay-based
solutions is to enable the first overlay node as the default gateway
of an end-host.

An overlay network may not have specific aggregation points to
provide the functionality of a resource manager for a collection of
nodes. Hence, this functionality needs to be distributed across all
overlay nodes (as described in Section 3.3.1).

4.3 QoS across Multiple ISPs
In order to use DCAP as the traffic policing building block for pro-
viding QoS across multiple ISPs, we need to make a few assump-
tions. First, we require an explicit RSVP-like admission control
phase to signal an individual flow’s performance requirements to
the ingress nodes of all ISPs. The ISPs along the path can locally
decide to admit or reject the flow based on the availability of its
network resources. Second, an admitted flow is supposed to carry a
stack of identifiers (one Fid per ISP along the path). Once a packet
of a flow exits an ISP’s boundary, the egress router should strip off
the corresponding Fid from the top of the stack. Third, when a
connection ends, the flow sends its ingress router an explicit mes-
sage (TEARDOWN) to release the resources.

These assumptions also pose as challenges towards deploying DCAP
in a multiple ISP scenario to provide end-to-end QoS. IntServ [11],
having been proposed almost a decade ago is far from being de-
ployed. The presence of multiple ISPs raises a fundamental limita-
tion towards deploying end-to-end QoS.

An alternative aspect currently under investigation is whether SLAs
between ISPs could be composed together for providing some mean-
ing form of end-to-end QoS guarantees. In Section 4.1, we pre-
sented a model of a dynamic SLA that one ISP acts as a transit
provider and offers a pipe abstraction between two of its neighbor-
ing ISPs. Consider a simple scenario of 4 ISPs, A,B,C and D in a
routing path. Assume that dynamic SLAs between A-B-C (i.e. B
offering a transit SLA between A and C) and B-C-D with identifiers
f1 and f2 are already in place. We can compose these identifiers
at the transit point between B and C to offer a pipe abstraction be-
tween A and D. If such a model can be extended end-to-end, we
can potentially offer coarse bandwidth guarantees between various
pairs of stub networks. If such a pipe abstraction between stub
networks is associated with multiple Fids the stub networks is re-
sponsible for allocating these Fids to the individual flows.

5. PERFORMANCE EVALUATION
In this Section, we evaluate the performance and robustness of
DCAP via simulation study. We first describe our methodology
in Section 5.2, including details on network topology and traffic
generation in our simulations. In Section 5.3, we list the four test
scenarios, which are designed to address specific issues. The results
and detailed discussions of each case are presented in Section 5.4-
5.5.

5.1 Simulation Model: Assumptions

AR0

AR1

AR2

AR3
AR4

AR5

AR6

AR7

AR8

Edge Router Core Router

Figure 5: Simulation Topology

To distinguish between QoS flows and non-QoS flows, we intro-
duce two classes of flows: high-priority and best-effort. We assume
that high-priority flows require statistical QoS guarantees while
best-effort traffic does not receive any performance assurance. Core
routers employ priority queuing to distinguish QoS flows from non-
QoS flows. We use a per-flow reservation protocol like RSVP [8]
to signal individual flow’s performance requirements to the ingress
nodes, which locally admit or reject new flows based on the avail-
ability of the network resources.

There are typically two types of admission control mechanisms:
parameter-based or measurement-based. Measurement-based ad-
mission control (MBAC) algorithms base their decisions on mea-
surements of existing traffic while parameter-based techniques ad-
mit flows based on worst-case bounds of different quality metrics
(delay, bandwidth, loss rate). Therefore, MBACs are best suited
for providing soft real-time service without hard guarantees. Many
MBAC algorithms and principles outlined in [22, 23, 21, 24] can
be applied in combination with DCAP. For our simulation study
and lab prototype reported in this paper, we use the Measured Sum
(MS) algorithm: a new flow arriving at edge router ERs and des-
tined for edge router ERd with bandwidth requirement Ai is ad-
mitted if:

Ai + Ltot(s, d) ≤ R(s, d)

where Ltot(s, d) is the total estimated traffic and R(s, d) is the
total capacity reserved for carrying high priority traffic between any
pair of ingress-egress routers, (s, d). R(s, d) could be statically
configured by an ISP based on traffic predictions or dynamically
allocated based on aggregate reservation requests. We assume the
former case in this paper.

5.2 Simulation Setup
We use the ns-network simulator to implement the basic mecha-
nisms of DCAP. The TP5 is implemented as a connector in front
of a node, and a time-window estimator is introduced at each input
link to estimate the rate of existing flows. The admission control
module is created as an NsObject and inserted before the ingress
ERs. The various tasks of the RM in our architecture are imple-
mented at the Tcl-level. Our DCAP-patch works for ns-2.1b6.

Since it is infeasible to run large-scale Internet simulations over ac-
5We modify the DiffServ module contributed by Sean Murphy,
http://www.teltec.dcu.ie/ murphys/ns-work/diffserv/index.html.



tual networks, we use ns to simulate a simple subgraph of an Inter-
net topology shown in Figure 5 that consists of a set of core routers
(CRs) and egress routers (ERs). The CRs are fully meshed, while
the ERs form stub networks connected to individual CRs. Flows
from host networks enter and exit the network domain through
edge routers, AR0-AR8, where they are aggregated for policing
using the DCAP scheme. All routers support priority scheduling
and there is enough buffering for 200 packets at each queue. All
control signaling between the RM (not shown on the figure) and
the ERs is carried in UDP messages.

We are unable to access real traffic traces from Internet backbone
networks because such data is proprietary. Instead, we derive traffic
models based on published results and data sets collected by ISPs
themselves.

The arrival process of the admission-controlled traffic is modeled as
Poisson with arrival denoted as λi(t). We use the index t to indicate
the time-of-day dependence of the traffic demand as reported in
[16] and [19]. For example, the bandwidth consumption typically
peaks between 10 a.m. and 2 p.m. during the day and shows a dip
from midnight to 3-4 a.m. To reflect the realistic traffic demand,
we introduce ± 10-15% changes to λi(t) at a regular interval of
30 minutes. The traffic distributions from an ingress ER to a set of
egress ERs are based on a random probabilistic model.

We use four kinds of traffic source models in our experiments:

1. We use EXP1 to model a typical Voice-over-IP source. EXP1
has exponential on and off times with an average of 1.004
s and 1.587 s, respectively. This corresponds to a 38.53%
talk-spurt cycle, as recommended by ITU-T specification for
conversational speech [5]. The peak transmission rate is 64
kbps, and the average is 24.8 kbps.

2. EXP2 also has exponential on and off times, but with an av-
erage of 100 ms and 900 ms, respectively. The peak rate
is increased to 248 kbps while keeping the average rate the
same as EXP1, leading to a burstier source.

3. CBR is a constant bit rate source of 64 kbps.

4. PARETO source has Pareto on and off times but the average
rate is the same as EXP1.

EXP1, EXP2 and CBR have exponential lifetimes with an average
of 300s. The flow lifetimes of PARETO sources follow a lognor-
mal distribution with average of 300 s. The aggregation of Pareto
sources is known to exhibit long-range dependencies [37]. For all
four cases, packets are 320 bytes in length.

In our simulations, we assume that each new flow will request for
bandwidth r that is equal to its average rate, regardless of its source
model. The network does not have a priori knowledge on the peak
rate or characteristics of the flows.

5.3 Test Scenarios
As discussed in Section 2.1, there are different performance criteria
in evaluating DCAP as a misbehaving flow detection mechanism.
In particular, we are interested in two events: successful detection
and false alarms. The probability of successful detection Psd is
approximated as the fraction of misbehaving flows that are actually
detected. Similarly, the probability of false alarm Pfa is the fraction

of normal flows that are incorrectly reported as misbehaving. Since
the flows are policed as an aggregate, misbehaving flows can cause
packets from complying flows to be dropped. The probability of a
packet being incorrectly dropped, denoted as Pmis, quantifies the
impact of misbehaving flows on end-to-end performance seen by
other member flows.

We study the trade-offs between these different metrics by tuning
the parameters of DCAP. Following the discussion in Section 2.1, it
is more desirable to sometimes miss the detection of a misbehaving
flow (hence lower Psd) than to wrongly penalize the good flows
and hurt their performance. Therefore, the objective of DCAP is to
maximize Psd, while keeping Pfa and Pmis to near zero.

To examine the robustness of DCAP, we simulate four extreme
cases:

Case 1: False Positive Detection
This is a control experiment with zero misbehaving flows to deter-
mine the optimum choice of DCAP parameters to reduce the num-
ber of false alarms.

Case 2: Homogeneous Flows:
This arrangement is similar to Case 1, but now a small fraction, γ,
of the flows are misbehaving. All the flows generate traffic with the
same average rate and have similar characteristics.

Case 3: Mixing Elephants and Mice
Flows generally do not have similar bandwidth requirements in a
real network. Previous studies show that 20% of the flows (known
as elephants) contribute to 80% of the Internet traffic. It is impor-
tant to understand how DCAP copes with such scenario.

In this test scenario, we assign Fids such that one large flow (the
elephant) and many simultaneous small flows (mice) are grouped
together for policing. The allocated rate of the elephant flow Al is
10 times larger than the allocated rate of a small flow, As. All of
the small flows are compliant, and only the large flow misbehaves.

Case 4: Hiding in the Aggregate
Again, we consider a mixture of one large flow and many simul-
taneous flows like Case 3. However, the large flow is compliant
this time, and a fraction γ of the small flows are misbehaving. This
is the case in which the small misbehaving flows may survive the
group policing without being detected by hiding in the group ag-
gregate (Section 3.2.4) if we only perform regular sampling.

We repeat each experiment using four different source models: EXP1,
EXP2, CBR and PARETO. For each scenario, the simulation was
repeated 10 times with different random seeds, and the average Psd,
Pfa, and Pmis was computed. Each simulation ran for 1000s. All
experiments were performed under high load with 20% blocking
probability. A misbehaving source requests allocation for r kbps
but sends traffic at a higher rate, randomly chosen between 1.1 · r
and 1.2 · r kbps (10-20% violation). The average and peak rate for
each source model is the same as described in Section 5.2.

5.4 Results and Discussions
Case 1: False Positive Detection
The experiments in Case 1 are intended for understanding the limi-
tations of the DCAP and its performance sensitivity with respect to
different choices of design parameters. Ideally, none of the flows
should be reported as “misbehaving”, but the transient behavior of
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Figure 6: Case 1: Zero Misbehaving Flows.
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Figure 7: Case 2: Many small homogeneous flows; a small fraction, γ =0.1, misbehave.

bursty traffic could momentarily overflow the Token Bucket Fil-
ters (TBFs) and be interpreted as misbehaving, leading to a “false
alarm”. Figure 6a shows how the choice of bucket size, bTBF at the
Traffic Policers (TP) affects the probability of mis-marked pack-
ets, Pmis. A smaller value of bTBF is more effective in detecting
misbehaving flows, but there should be enough tokens to allow the
legitimate packets to pass, and keep the Pmis low. Except for the
CBR traffic, Pmis is below 0.01 for other source models. When the
bTBF is set to 6000 using a fixed leaky rate, all the flows (including
CBR traffic) can be policed with losses Pmis less than 0.005. The
two hysteresis parameters η and ε determine under what conditions
a flow is reported as “misbehaving” (Section 3.2.3), but have no
effect on Pmis.

We can relax the condition for DCAP by increasing ε and η, and
this helps to reduce the number of false alarms. Figure 6b and 6c
study how Pfa varies as a function of η for ε = 0.0 and 0.05. For a
0% tolerance level in DCAP (i.e., ε=0), Pfa decreases gradually as
η is increased. However, we notice that Pfa drastically decreases
for all the source models when the tolerance level is increased to
5%. This indicates that Pfa is more sensitive to ε than η. For the

rest of the experiments, we choose ε=0.05 and bTBF = 6000.

Case 2: Homogeneous Flows Scenario
Increasing η causes a delay in reporting misbehaving flows and
may adversely impact the effectiveness of DCAP. We examine this
issue in Case 2. We set the value of γ (fraction of misbehaving
flows) to be 0.1. Figure 7a and 7b show the variation of Psd and
Pfa as η is increased from 1 to 10. The effect of η on Psd for
the CBR source is minimal. For the other source models, Psd de-
creases sharply when η is increased and the rate of decrease varies
across the source models. From Figure 7b, we can infer that only
in the case of the EXP2 source model is Pfa sensitive to the value
of η. With η = 1, we can detect most of the misbehaving flows
with EXP1 (79%), CBR (83%) and PARETO (64%) sources with
virtually zero Pfa. In the case of EXP2, there is a trade-off between
maximizing Psd and minimizing Pfa as we choose the value for η.
This indicates that burstier sources are more difficult to detect. The
observed Pmis is between 0.02-0.79%.

We also measured the detection time for each correctly identified
misbehaving flow and plotted the distributions in Figure 7c. With



Table 1: Case 3: One large misbehaving flow and many small
complying flows. η = 5, bTBF = 6000, ε = 0.05.

Source EXP1 EXP2 CBR PARETO

Psd 1.0 1.0 1.0 1.0
Pfa 0.0077 0.027 0.012 0.0013
Pmis 0.003 0.00021 0.0072 0.0037
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Figure 8: Case 4: One large flow (Al) and many small flows
(As); γ of small flows misbehave.

η = 1, the average detection time is 26.9 seconds, which is less
than 1/10 of the average duration of a flow. 90% of the flows are
detected within 78.9 seconds. When we increase η to 5, the average
detection time increases to 33.8 seconds, which is still reasonably
fast. The 90th-percentile detection time is 80.4 seconds in this case.

The simulations in Case 2 show the basic results of DCAP hold
across different source models. Although long range dependent
traffic like PARETO is harder to detect, we can achieve a reasonable
success rate (0.64) with zero false alarms. The presence of burstier
sources, EXP2, pose challenges to the DCAP scheme, and we need
to choose the value for η carefully to maximize Psd while keeping
Pfa reasonably small.

Case 3: Mixing Elephant and Mice
We have so far considered only homogeneous flows with the same
rates. In the next two cases, we consider an extreme case where
one large flow and many small flows are aggregated together for
policing (Section 5.3). We repeat our experiments for four differ-
ent source models. In Case 3, only the large flow is misbehaving.
The results are summarized in Table 1. For all source models, we
always successfully detect the misbehaving large flow and Pfa is at
most 0.027.

Case 4: Hiding in the Aggregate
Case 4 addresses the scenario where misbehaving small flows “hide”
in the aggregate with another large flow. The probability of a small
flow being misbehaving is γ. Intuitively, we suspect that detection
is harder in this case, because the misbehaving flows can “steal” the
idle bandwidth allocated to the large flow. Since the traffic policer
can only enforce the total allocated rate, the misbehaving flows may
not be detected. Figure 8 shows the Psd achieved for different val-
ues of γ and Table 2 summarize Psd, Pfa and Pmis for γ = 0.1 and
0.5. Surprisingly, we notice that the Psd achieved with γ = 0.1 for

Table 2: Case 4: One large flow and many small flows. γ of
small flows misbehave. η = 5, bTBF = 6000, ε = 0.05.

Source Model EXP1 EXP2 CBR PARETO

γ = 0.1

Psd 0.74 0.43 0.75 0.57
Pfa 0.00066 0.011 0.0 0.0
Pmis 0.0032 0.00016 0.0047 0.0028

γ = 0.5

Psd 0.61 0.51 0.67 0.39
Pfa 0.00067 0.025 0.0 0.0
Pmis 0.0030 0.00047 0.0088 0.0022

EXP1, CBR, and PARETO sources are fairly close to the results in
Case 2, where there is no large flow. But for EXP2, the success rate
is significantly smaller (Psd=0.43 in Case 4 as supposed to 0.54
in Case 1). When γ increases, the success rate Psd decreases for
EXP1, CBR and PARETO source models. With EXP2, Psd fluctu-
ates as we vary γ, and is actually higher at γ=0.5 than γ=0.1. This
is because the active cycle of EXP2 is very short (10%), and can
easily go undetected if it coincides with the idle period of the large
flow. However, when the fraction of misbehaving flows increases,
there is an increased likelihood that some of the misbehaving flows
will synchronize or overlap in their active cycles, leading to over-
flow of the TBF at the traffic policer. When the aggregate rate is
violated, all the flows sharing the same subfield (FidIn or FidEg)
will be monitored individually (micro-monitoring) and the misbe-
having flow can be correctly identified. The probability of false
alarms Pfa and mis-marked packets Pmis are negligible in this case
across different values of γ and source models.

5.5 Further Sensitivity Analysis
So far, we have been considering flows with homogeneous source
characteristics in our simulations. The next experiment uses a ran-
dom mixture of the four different source models (EXP1, EXP2,
CBR and PARETO), each with different peak rates, idle times and
burst times. Each arriving flow chooses among these source mod-
els at random. We repeat the experiment in Case 2, with η=1 using
heterogeneous flows (HET), and compare the results with Case 2
where homogeneous flows are used. Results are summarized in Ta-
ble 3. With HET sources, the success rate Psd is lower than all
the other homogeneous source models, but the differences in Pfa

and Pmis are negligible. It is difficult to tune the hysteresis or TBF
parameters to optimize the overall performance since the source
characteristics are not known a priori.

We repeat the Case 2 experiment using the EXP1 source with the
following modifications:

a. DCAP without micro-policing mode, and

b. DCAP deployed at ingress ERs only.

Results show that only 23% of misbehaving flows are detected in
(a), and 53% in (b), which is significantly lower than 79%, when
DCAP is deployed at both ingress and egress ERs (Figure 7).

6. IMPLEMENTATION
In this section, we provide a brief description of a DCAP proto-
type implemented on top of the Click modular router [25]. We
use this implementation to evaluate certain performance metrics



which could not be accurately quantified through simulations. One
such important metric is the overhead incurred at an edge router by
adding DCAP control functionalities. The current implementation
works on Linux 2.2.16 and 2.2.17 kernels.

6.1 Overview of Prototype
Click is a Linux-based software router, and is assembled from packet
processing modules called elements. Individual elements imple-
ment simple router functions like packet classification, queuing and
scheduling. We extend the Click router to support three additional
elements: the traffic policing (TP) unit, the reservation agent(RA),
and DCAP agent. The RA is responsible for directing flow requests
to the Resource Manager (RM) and forwarding responses from the
RM to the client. The TP is implemented as a set of token bucket
filters to police admitted flows. When a specific group of aggre-
gate traffic exceeds its allocated threshold, an alarm is sent to the
DCAP agent, which then handles the micro flow policing and ver-
ification process to identify the misbehaving flows as described in
Section 3.2.

The communication between the Click router and the Resource
Manager is performed through SNMP. In order to enhance the through-
put of the Click router, we reduce the number of context switches
required for processing the control packets from the RM by batch-
ing the messages from the RM to the Click router.

6.2 Experimental Setup
Using our DCAP prototype, we measure the performance overhead
of adding the Reservation and Monitoring agents in an edge router.
To quantify this overhead, we compare the maximum throughput
obtained from our implementation to a basic implementation of
Click which did not contain any of the monitoring tools (hereafter
referred to as default Click). This experiment helps provide insights
as to whether it is practical to deploy DCAP.

For evaluation purposes, we set up our own cluster of machines
over a 10.0.0.0/24 network. The throughput measurements depend
on the configuration of the network testbed and the machine imple-
menting the Click router. For studying the performance, we restrict
ourselves to the communication between the RM and one edge
router (implemented on top of Click). The machine running the
Click router has the following configuration: Pentium-III 650 Mhz,
3com 3c905 Ethernet controller. We use one other machine with a
similar configuration as the RM. We used four other machines as
sources and sinks of traffic. All these machines are connected to
a backbone router using 100 Mbps connections. The router is a
Bay Networks Accelar-1100B router with the capacity to support
16 100 Mbps Ethernet ports. The traffic statistics was periodically
sent to the RM every 100ms. We modified Mgen [2], a publicly
available traffic modeling software, to generate traffic for our ex-
periments.

Table 3: Comparisons between heterogeneous and homoge-
neous source models: γ = 0.1, bTBF = 6000,ε = 0.05.

Source HET EXP1 EXP2 CBR PARETO
Model

η = 1
Psd 0.55 0.79 0.73 0.83 0.64
Pfa 0.0 0.0 0.14 0.0025 0.0
Pmis 0.0030 0.0028 0.00016 0.0079 0.0031

Table 4: Average Performance Reduction vs number of flows
Number of flows Reduction in Throughput(%)
≤ 300 ≤ 0.1

350 1.5
400 2.8
450 1.6
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Figure 9: Response Time of Flow Allocation for varying loads

6.3 Experimental Results
In our first experiment, we measured the maximum throughput of
our implementation at different loads and compared it to a default
Click router. A basic flow in our setup has a bandwidth of 80 kbps
and a packet size of 1024 bytes. As the number of flows increases,
the amount of policing and state needed at the edge router also
increases.

Table 4 shows the average reduction in the throughput of the access
router for varying number of flows. We make two observations.
First, the overhead incurred due to DCAP, i.e., the percentage of
throughput degradation from default Click, is small. The maximum
throughput difference observed in all our experiments is 5% and the
average degradation is much smaller than this. Second, we notice
that the throughput of the Click router saturates in our system at
around 400 flows. Beyond 500 flows, we observed packet drops in
the network interface.

In the second experiment, we measured the response time for flow
allocation at different loads. We achieved a particular load in the
system by maintaining a constant number of active flows and send-
ing dummy flow requests to the Click router from the Traffic gen-
erator. There are three stages in the process of obtaining a response
for a flow request: the RA in Click forwards the request to the RM,
the RM performs admission control on the flow, and the RM sends
the response to the requesting entity through the RA.

In Figure 9, we plot the cumulative distribution of the response time
at three different loads: 200 flows (small load), 400 flows (satura-
tion point) and 500 flows (high load). From the graph, we can
observe that the mean response time increases as the load increases
and the CDF shifts to the right. In all our experiments, we ob-
serve a minimum response time of 2.5 ms and a maximum of 7.2
ms. Our results indicate that the standard deviation of our response
time is high. This can be attributed to the batching of responses
at the RM and timer-based processing of flow requests at the Click



router. However, this variance is tolerable since the mean response
time is small.

7. CONCLUSIONS
Although detection of misbehaving flows has been recognized as
an important aspect of resource control, a practical and scalable
way of implementing it has not been studied in great detail. This
paper proposes a new scheme called DCAP (Detection via Collabo-
rative Aggregate Policing) for policing incoming flows and detect-
ing misbehaving behavior without requiring per-flow state mainte-
nance at any edge routers. By aggregating flows for group polic-
ing, DCAP only requires O(

√
n) state maintenance at edge routers

(where n is the number of flows), which is substantially better than
previous approaches. Extensive simulations show that DCAP is ef-
fective and robust across a variety of source models and extreme
cases. For the EXP1 source (VoIP type), DCAP can successfully
detect 79% of misbehaving flows with almost zero false alarms and
about 0.3% incorrectly-dropped packets. However, further study
is needed to improve the detection of bursty misbehaving sources.
Our approach has significant practical value since DCAP can be im-
plemented with simple per-packet operations in a high-speed line
card on a router. Our prototype demonstrates that DCAP adds min-
imal processing overhead to edge routers.

7.1 Future Work
As part of the future work, we will address the various practical
issues of deploying DCAP in the existing Internet.

Changes to Routers: To deploy DCAP, no changes are required
in the core routers, while the policing and monitoring need to be
added to the edge routers. From our Click implementation, we infer
that the modifications needed to add the extra DCAP mechanisms
in an edge router is minimal. The entire implementation consists of
4463 lines of C++ code. Per-packet operations of DCAP can also
be implemented in hardware.

Alternate Accounting Mechanism: In this paper, we perform reg-
ular sampling during the “micro-policing” phase of DCAP to track
the bandwidth usage of individual flows within a sub-group. In
future, we will consider alternative accounting mechanisms, in-
cluding the scheme proposed in [14], to track the top flows (also
known as heavy hitters) that contribute the most to the traffic within
a group.

Security Issues: In Section 3.1.3, we briefly specified some of the
security concerns (like bogus identifiers) with our solution. While
we have made some in-roads towards addressing some of these con-
cerns, a more detailed analysis of security issues is part of future
work.
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