
Secure Internet Indirection Infrastructure
(I3)

Dan Adkins
UC Berkeley

January 14, 2003

Dan Adkins, UC Berkeley



Introduction

• Internet has two major limitations

– Flexibility
– Security

• Recent work addresses flexibility

– Overlay networks in general
– I3 in particular
– Flexibility allows more diverse and powerful applications
– More control to endhosts can actually increase robustness

• Goal: Network infrastructure that is both flexible and secure

• I3 as a proof of concept

Dan Adkins, UC Berkeley 1



Challenge

• I3 is more vulnerable to malicious attacks than the Internet

– I3’s flexibility is both a feature and a potential for abuse
– Active networks had this problem

• Can I3 be as secure as the Internet without sacrificing flexibilty?

– or even more secure?

• We could encrypt everything

– But that’s overkill
– Only addresses privacy

Dan Adkins, UC Berkeley 2



I3 Overview

• Efficient indirection layer on top of IP

• Rendezvous based communication abstraction (instead of point-to-point)

– Each packet has an identifier id
– To receive a packet with identifier id, receiver R maintains a trigger (id,R) in

the overlay network

��������������
��������������

(id, R)
sender (S)

receiver (R)

(a)

��������������
��������������

(id, R)
sender (S)

receiver (R)

(id, data)
(R, data)

(b)

• Triggers consist of (id, dest)

– dest can be either ID or IP address
– Multiple triggers with same ID and trees of triggers possible

Dan Adkins, UC Berkeley 3



Problem statement

• Want to

– Avoid eavesdropping
– Avoid impersonation
– Avoid DoS
∗ on infrastructure: loops, confluences
∗ on clients: reflection

• Without losing flexibility

– Trees of triggers
– Ability to choose ID’s
∗ Place triggers on specific servers

– Service composition

• With little overhead

Dan Adkins, UC Berkeley 4



Eavesdropping

• Eve wants to listen to Alice and Bob’s traffic

• Eve inserts trigger with same ID as Bob’s trigger

– Possible as a consequence of multicast

• Undetectable to Alice or Bob

• Unavoidable if Bob’s trigger is public

��������������

��������������

��������������

(id, data)

Alice (A)

(id, B)

(id, E)

(B, data)

(E, data)

Bob (B)

Eve (E)

Dan Adkins, UC Berkeley 5



Impersonation

• Active version of eavesdropping

• Eve impersonates Bob to Alice

• Eve takes over Bob’s public trigger when it expires

– due to crash, DoS, network outage, etc.

��������������

��������������

��������������

(id, data)

Alice (A)

(id, B)

(id, E)

(B, data)

(E, data)

Bob (B)

Eve (E)

Dan Adkins, UC Berkeley 6



Loops and confluences

• Some troublesome topologies can lead to DoS

• Loops

– May be formed maliciously or inadvertently
– Causes an endless stream of packets

• Confluences

– Tree expanding out then in
– Can be used as a packet multiplier
– Roughly speaking, any unwanted convergence of paths

�������������� ��������������

Dan Adkins, UC Berkeley 7



Reflection

• Eve subscribes Bob to high volume traffic

• An attacker must be able to insert a trigger on the victim’s behalf

��������������

��������������

��������������

(id, data)
(B, data) Bob (B)

Eve (E)

(id, B)

Dan Adkins, UC Berkeley 8



Solution: constrain triggers

• Idea: maybe arbitrary triggers aren’t necessary

– (x,y) such that x and y are independent

• Only allow trigger (x,y) if x=G(y) or y=H(x)

– where G and H are one-way hash functions

– I3 identifer changes:
80 9680

must match

keyprefix suffix

IP

– Actually, x.key=G(y.key), so end-hosts have some choice

• Servers will check constraints

• Solves eavesdropping, loops, confluences (?)

• Preventive solution

Dan Adkins, UC Berkeley 9



Problems

• Eavesdropping

• Impersonation

• Loops

• Confluences

• Reflection

Dan Adkins, UC Berkeley 10



Eavesdropping

• Insert trigger (G(y),y)

– G(y) is a public ID
– Attacker must invert G to insert trigger

• y can be an ID or IP address

• y.key must be kept secret

– Ok to send trigger insertion message in the clear
– If Eve can snoop trigger insertion, Eve already has local network access
∗ No worse than Internet

• What if Eve inserts (x,H(x)) where x=G(y)?

– Triggers of form (G(y),y) always take precedence

Dan Adkins, UC Berkeley 11



Problems

• Eavesdropping

• Impersonation

• Loops

• Confluences

• Reflection

Dan Adkins, UC Berkeley 12



Loops and confluences

• Triggers can be either (G(y),y) or (x,H(x))

– (G(y),y) — tree built from receiver
– (x,H(x)) — tree built from sender

• Nearly impossible to form a loop with constrained triggers

– Requires finding hash chain that eats itself
– As hard as inverting one-way function

• Confluences on a single ID are impossible too

– Can only build trees from sender or receiver
– No way to connect them without inverting G or H

• But, confluences on I3 nodes are still possible!

Dan Adkins, UC Berkeley 13



Server confluence

• DoS against infrastructure still possible

– Attacker can overload I3 node by directing confluence towards multiple ID’s
on the same server

– Not technically a confluence (no convergence point)

• Use push-back

– I3 servers or clients under load may remove triggers
∗ Weighted fair queueing helps identify which triggers to remove

– Dead end triggers are a problem for the infrastructure in general
– Solution: When a packet arrives that matches no trigger, send it back
– The sender (another I3 server) should remove the trigger which caused the

packet

• Push-back is a good idea in general for error detection

• Push-back is more effective if each host connects to a nearby I3 server.

Dan Adkins, UC Berkeley 14



Problems

• Eavesdropping

• Impersonation

• Loops

• Confluences

• Reflection

Dan Adkins, UC Berkeley 15



Impersonation and Reflection

• Impersonation

– Only a problem when server goes down
– If you really care, exchange secrets or certificates

• Reflection

– Principle: You should only receive packets which you (implicitly) request
– Solution: Challenges
∗ Trigger insertion pointing to an IP address must come from that address
∗ Server sends a challenge to that address

Dan Adkins, UC Berkeley 16



Tradeoffs

• Overhead of checking constraints

– Trigger insertion increased from 19us to 24us

• Challenges cost an extra RTT

• True service composition breaks

– Requires per-flow state
– We have solution with arbitrary triggers which won’t impact service of

constrained triggers
∗ Constrained triggers have precedence over arbitrary triggers
∗ But, arbitrary triggers require higher overhead checks

Dan Adkins, UC Berkeley 17



Conclusion

• I3 can be flexible without compromising security and performance

– with constrained triggers, not worse than today’s Internet

• End-hosts can use I3’s flexibility to improve resilience against various attacks

Dan Adkins, UC Berkeley 18


