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Abstract

It is well-known that the use of path diversity, i.e., the use of multiple end-to-end paths can improve
the performance of applications such as multimedia streaming and Voice over IP. Leveraging path diver-
sity requires applications to choose independent paths, i.e., paths that do not share Points of Congestion
(PoCs). Although independent paths may not be available, performance can often be improved by selecting
paths with the least amount of shared congestion. In this paper, we propose Shared CONgestion Estimator
(SCONE), a tool that provides an estimate of shared congestion between two paths. SCONE sends probe
flows along each of these paths and calculates the fraction of drops appearing in correlated bursts as the
estimate of shared congestion. The assumption here is that correlated bursts typically occur at shared PoCs.
Previously proposed path selection techniques only determine if two paths share a PoC or not. Also, previ-
ous techniques require that the two paths form one of only 2 topologies, while SCONE can work with two
additional topologies relevant to applications such as media streaming for a single source/destination pair
over multiple paths. We used both ns-2 simulations and wide area experiments on PlanetLab to evaluate
SCONE. We measured SCONE’s ability to correctly estimate the fraction of drops that occurred at shared
PoCs. We found that the absolute estimation error of SCONE is no more than 0.2 in 95% of simulation
experiments. In 80% of the wide area experiments, SCONE has an absolute estimation error less than 0.3.
We also show that the overhead of probe traffic can be avoided by passively observing application traffic
such as multimedia streams which send adequate amounts of traffic.

1 Introduction

Congestion on paths in today’s Internet is known to be bursty in nature[FJ93, YMKT99, ZDPS01]. When
applications such as multimedia streaming experience bursty losses, their performance is adversely impacted.
The use of multiple end-to-end paths, also referred to as path diversity, has recently [AWTW02, NZ03, RKB00]
emerged as an effective method to limit the effects of congestion on any one of the paths. For instance, Nguyen
et al. [NZ03] show that a suitably encoded multimedia stream split over two overlay paths between the same
source and destination exhibits lesser variation in playback quality than a stream over a single path.

The simplest path selection mechanism to exploit path diversity is to choose link-disjoint paths (using tracer-
oute) or independent paths, i.e., paths that do not share a Point of Congestion (PoC)1. However, independent
paths may not exist. For instance, any two overlay paths between the same source and destination [NZ03] may
share PoCs among the common last mile links near the source and destination. In the absence of independent
paths, path diversity is best exploited by selecting paths with the least amount of shared congestion. However,

1We define a PoC to be a router that is dropping packets
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previously proposed techniques [HBB00, KB01, RKT00] only detect the existence of shared PoCs. In this
paper, we present Shared CONgestion Estimator (SCONE), a tool that enables more practical path selection
mechanisms by measuring shared congestion between two paths.

Given two paths, SCONE sends a probe flow along each path and calculates the fraction of drops of each
flow that are likely caused at shared PoCs. SCONE provides these as estimates of shared congestion between
the two paths. To compute these estimates, SCONE assumes that drops in correlated bursts occur at shared
PoCs. SCONE employs the Expectation-Maximization (EM) [DLR77] algorithm with Gaussian mixture model
to classify packet drops of each flow into bursts. To determine correlated bursts, SCONE approximates the
times at which packets traversed shared links (and PoCs, if any) using their sending and receiving times. The
approximation depends on the topology formed by the pair of paths. The topology could be one of the four
shown in Figure 1. We believe that most applications that leverage path diversity with two paths use only one
of these topologies.

We evaluate SCONE using ns-2 simulations and wide area experiments on PlanetLab [Pla03], a global overlay
network. The wide area experiments use a novel concatenated IP paths method to evaluate the performance
of SCONE over real IP paths without knowledge on PoCs along these paths. We measured SCONE’s ability
to correctly estimate the fraction of drops that occurred at shared PoCs. We found that the absolute estimation
error of SCONE is no more than 0.2 in 95% of simulation experiments. In 80% of wide area experiments,
SCONE has an absolute estimation error less than 0.3. We also show that the overhead of probe traffic can be
avoided by passively observing application traffic such as multimedia streams which send adequate amounts
of traffic.

Prior work related to choosing independent paths [RKT00, KB01, HBB00] used the fact that two flows through
the same PoC will see correlated losses and/or delay. However, they considered only 2 of the 4 topologies that
SCONE can work with and cannot be used with applications such as the multipath multimedia streaming
application [NZ03]. Also, all of them only detect shared congestion and do not provide any estimate of shared
congestion which is not useful for many applications. The techniques presented in [RKT00, HBB00] use active
probes. As we show in this paper, SCONE can easily work by passively observing typical multimedia streams.
Only limited evaluations of all these techniques over true wide-area paths has been done. One of our strengths
is the detailed evaluations that we performed of SCONE.

This paper is organized as follows. In Section 2, we use prior work to motivate the target topologies using
various applications and briefly describe how they may use SCONE. In Section 3, we explain our goals and
assumptions, and describe the design of SCONE. We describe our simulation experiments in Section 4 and the
wide area experiments in Section 5. We present our conclusions and future directions in Section 6.

2 Related Work

2.1 Applications and Target Topologies

In this paper, we consider the estimation of shared congestion between two paths. Generalizing this to multiple
paths is a subject of future work. The two paths may form one of 4 topologies shown in Figure 1. We believe
that most applications that leverage path diversity use paths that form one of these topologies. We now describe
motivating applications for each of these topologies.

Prior work in multimedia streaming [AWTW02, LSG01, NZ02, NZ03] showed that suitably encoded streams
on multiple paths are much more resistant to congestion. In [AWTW02, NZ02], a client receives multimedia
streams from multiple content servers. In this case, servers must be chosen such that the resulting paths to
the client share as little congestion as possible. Any two paths from different servers to the client form the Y
topology shown in Figure 1(a). Here, S1, S2 represent the sources and R1, R2 represent the destinations of the
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Figure 1: Topologies Created by Applications

two paths. The iY topology shown in Figure 1(b) is useful in minimizing the time taken to distribute content
[BLMR98]. In [NZ03], multimedia streams are sent using multiple overlay paths from the same source to
the same destination. In this case, it is desirable to limit the congestion shared by the paths. Any two paths
using an additional overlay node form the iY Y topology shown in Figure 1(c)). Determining the amount of
shared congestion between two arbitrary paths (the Y iY topology) is useful in reducing the probing overhead
[CBK03] of overlay networks such as RON [ABKM01].

The above applications use estimates of shared congestion to improve performance metrics such as playback
quality and probing overhead. Certain other applications may use estimates of shared congestion to minimize
undesirable or unfair competition to resources. Typically, this happens when an application has multiple flows
traversing the same PoC. For instance, consider a client using parallel downloads [RKB00]. The various paths
used by the client form the Y topology shown in Figure 1(a). Parallel downloads that use traverse the same
PoC would grab an unfair portion of the bandwidth at the PoC. Similarly, the paths from a content server to
various mirror servers form an iY topology. It is desirable that these paths share as little congestion as possible
to prevent unfair competition between the flows to various mirror servers.

2.2 Techniques

Our work uses the observations made by previous studies on Internet path characteristics [JS00, ZDPS01,
YMKT99]. These studies show that droptail queues used in most Internet routers lead to periods of bursty
loss. Prior work on shared congestion [HBB00, KB01, RKT00] attempted to only detect the existence of
shared PoCs and did not provide any estimate of shared congestion. Also, they only considered the Y and iY
topologies. To our knowledge, our technique is one of the first ones to provide a solution to estimating shared
congestion with the Y iY and iY Y topologies. A solution based on wavelet analysis of delay is presented in
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[KKS+03]. However, their evaluation is mostly restricted to simulations.

In [RKT00], Rubenstein et al. use cross and auto correlation of delay and loss of Poisson probes to detect a
shared PoC. They prove that the cross correlation of delay or loss is greater than the autocorrelation when two
flows share a PoC. An implicit assumption made by them is that arrival times of Poisson probes in the queue at
a shared PoC still follow a Poisson distribution. However, this need not be true, especially if there is significant
jitter before the shared PoC. Also, their solution cannot be used when there are multiple PoCs on any of the
paths. They provide limited experimental evidence to support their solution. Harfoush et al. [HBB00] use
loss probabilities of single-packet and packet-pair probes (so-called conditional Bayesian probing) to identify
shared losses. They evaluate their scheme with extensive simulations using a 2-hop topology. They do not
provide experimental evidence to support their scheme.

Katabi and Blake [KB01] measure Renyi entropy of packet inter-arrival times of passive traffic to infer shared
PoCs and then cluster flows which share the same PoC. In other words, they consider only the Y topology.
In [PQW03], Padmanabhan et al. study the use of various sampling methods to characterize lossy links to a
server from clients. They use passively observed client-server traffic to identify lossy link(s) from the client
to the server. Tomography-based solutions to identifying lossy links and loss rates [PQW03] use much larger
datasets than we assume and may be considered complementary to our work. In [YF02], Younis et al. use
in-band delay measurements to cluster clients sharing the same congested route to a server.

3 Design

Having motivated how the various topologies arise in the context of various applications, we start this section
by describing our goals and assumptions. Then, we discuss technical challenges to achieve them. Finally, we
describe SCONE and how it tackles each of these challenges.

3.1 Goals and Assumptions

Given two paths, our goal is to send a probe flow along each of them and to estimate, for each flow, the fraction
of drops caused at shared PoCs. The two paths form one of the 4 topologies shown in Figure 1. The probe
flows may consist of actively sent traffic or passively observed application traffic. We assume that drops at
PoCs are bursty due to the droptail nature of most routers and TCP congestion control. We also assume no
network support; the only data available to calculate our estimates are the sending and receiving times along
with loss information. Path properties such as loss and delay have been observed to be stationary (on the order
of a few minutes) [ZDPS01]. This justifies our approach of using estimates based on past behavior to select
paths for future use. Also, in the absence of admission control, past behavior is the best available indicator of
future behavior.

3.2 Challenges

The occurrence of bursty packet drops implies that packets of two flows traversing a PoC at roughly the same
time are usually either both dropped or not dropped [RKT00]. Hence, we estimate the fraction of shared drops
by assuming that correlated drops occurred at shared PoCs. Here, we define correlated drops to be drops that
occurred within some time δ of each other. We introduce δ only for developing our technique. It is not required
in our final technique. To use this approach, three technical challenges need to be addressed.

• We need to determine correlated drops using only the sending and receiving times.

• Not all packets traversing a PoC during a loss period are dropped. This leads to false negatives.
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• A loss period at a PoC that is not shared may persist long enough to coincide with a loss period from
another PoC. Thus, the above approach could also lead to false positives.

3.3 Shared CONgestion Estimator

Next, we describe Shared CONgestion Estimator (SCONE), our tool to estimate shared congestion between
two paths and explain how it tackles each of the above challenges. We assume that the probe flows, F1, F2

used by SCONE consist of periodically sent UDP packets of size S bytes. We use t to denote the time between
consecutive probe packets. We denote µactual,i to be the actual fraction of packet drops of flow Fi at shared
PoCs and µi to be the estimate computed by SCONE. For convenience, we sometimes drop the subscript i to
refer to either of the two flows. Table 1 summarizes all notations that we use in this paper.

3.3.1 Determining Correlated Drops

The basic idea behind determining correlated drops is simple. Consider a hypothetical network in which all
PoCs are clock synchronized. Also, assume that these PoCs timestamp packets that are dropped and provide
the packet identities and timestamps to the source. Dropped packets with timestamps that are within δ of each
other are correlated. In reality, we need to approximate these timestamps using the sending and receiving times
only. Since the sources in the iY topology (see Figure 1(b)) are co-located, their clocks are synchronized.
Also, the delay from each source to any shared link (or PoCs) is the same. Hence, the sending times of each
source differ from the hypothetical timestamps at a shared PoC by the same amount. Thus, the sending times
can be used to define correlated drops. Similarly, in the Y topology, the receiving times of each destination
differ from the hypothetical timestamps at a shared PoC by the same amount. Since receiving times of dropped
packets do not exist, we intrapolate the receiving times of other packets to assign receiving times to dropped
packets. For instance, consider a single dropped packet sent between two packets which are received at t1 and
t2. The dropped packet is assigned an intrapolated receiving time of (t1 + t2)/2. The intrapolated receiving
times approximate the hypothetical timestamps and can be used to define correlated drops. Packets in the iY Y
topology (see Figure 1(c)) may be dropped by PoCs shared near the sources or destinations. Hence, two drops
are correlated if they are correlated using the sending times or intrapolated receiving times.

Determining correlated drops of paths forming the Y iY topology is more complicated. Consider hypothetical
PoCs in the Y iY topology (see Figure 1(d)) that timestamp dropped packets as before. Denote di to be the
one-way delay from the source Si of flow Fi to an arbitrary shared PoC. Also, assume that S1 is synchronized
with the clock at each PoC and that S2 lags this clock by ∆. Now, a packet of flow Fi with a timestamp of τi

would have been sent at time τi − di of the clock at each PoC. The local sending time of the packet of flow F1

would be s1 = τ1 − d1. The local sending time of the packet of flow F2 would be s2 = τ2 − d2 − ∆. By our
definition, |τ1 − τ2| ≤ δ for correlated drops. Hence, the following also holds for correlated drops:

|s2 − s1 + (d2 − d1 + ∆)| ≤ δ (1)

We refer to the quantity, (d2 + d1 − ∆) as the synchronization lag (synclag). Figure 2 illustrates synclag using
two sources S1 and S2 of a Y iY topology. The packet sent at time 0 of the local clock at S2 traverses the shared
PoC at around the same time as the packet sent at time 2 of the local clock at S1. Therefore, the synclag of
flow F2 (with respect to flow F1) is about 2 − 0 = 2. The above analysis is valid even without our assumption
that the clock at S1 is synchronized with hypothetical clocks at shared PoCs. This is because the definition of
synclag involves the difference in times at S1 and S2 only.

To estimate the synclag, we assume that it remains constant during the lifetime of the probes. Note that the
difference between the times at two sources can be bounded by the round trip time (RTT) between the sources
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Table 1: Notation used in this paper

Notation Comments
µ estimated fraction of packet drops at

shared PoCs of any flow
µ̂ actual fraction of packet drops at

shared PoCs of any flow
µi estimated fraction of packet drops at

shared PoCs of flows along path i(i = 1, 2)
µ̂i actual fraction of packet drops at

shared PoCs of flows along path i(i = 1, 2)
µmin lower bound on the fraction of packet

drops at shared PoCs of any flow
µmax upper bound of the fraction of packet

drops at shared PoCs of any flow
Fi probe flow i(i = 1, 2)
f overlap fraction
b burst interval
t interval between successive probe packets
s size of probe packets

synclag synchronization lag
CCC cross correlation coefficient

by letting them exchange clock information. Also, the difference of one-way delay to shared links is bounded
by the maximum RTT from the sources to destinations. Hence, the synclag is bounded by 2RTTmax. A correct
estimate of synclag is likely to correlate shared drops than a wrong estimate. Referring to Figure 2, assume
that a bursty loss period causes packets 2, 3 sent by S1 and 0, 1 sent by S2 to be dropped. The correct estimate
of synclag would correlate all these drops. A wrong estimate would correlate at most 1 drop per flow. In other
words, the correct value of synclag is likely to lead to the maximum number of correlated drops. Therefore,
we try various values of synclag and choose the one that leads to maximum number of correlated drops. Since
|synclag| < 2RTTmax, we need to try 2RTTmax/t values of synclag with a probing period of t. In practice,
the number of values is not more than 100 assuming RTTmax of 0.5s and a probing period of 10ms.

We make three points on using the above method to estimate synclag.

• If two flows do not share any PoC, the above process could sometimes lead to a significant number of
drops being correlated falsely. This is a disadvantage of the above scheme. But we observe this in very
few cases in our experiments.

• One component of the synclag is the difference between the clocks at the two senders. NTP [Mil92]
can be used to eliminate this. However, the delay to shared links cannot be measured using end-host
measurements alone. Hence, for the Y iY topology, we must use the described algorithm to calculate
synclag even when the end-hosts are perfectly synchronized.

• The method to calculate the synclag in the Y iY topology assumes that the shared links form one contigu-
ous segment and that the times at which all shared PoCs are traversed can be approximated by shifting
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the sending times by the same value. In topologies where the shared links do no all form a contiguous
segment (e.g., the iY Y topology), our method of calculating synclag cannot be used.
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Figure 2: An illustration of synclag (= ∆ + d2 − d1) of F2 with respect to F1 when the time at two sources S1

and S2 differs by ∆ and have a delay of d1 and d2 to the shared PoC. A packet sent at time t by S2 traverses
shared links at around the same time as a packet sent at time by t + synclag by S1.
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Figure 3: Illustration of SCONE’s Classification of Bursts

3.3.2 Clustering Drops into Bursts

Counting correlated drops may lead to false negatives. This is because all packets in a bursty loss period may
not be dropped. Hence, we take the approach of classifying drops into bursts and counting the number of drops
in correlated bursts. We classify two drops of a flow to belong to the same burst if and only if they were sent
within a time b of each other. We refer to b as the burst interval and consider the burst to have lasted from time
b before its first observed drop to b after its last observed drop. This is shown in Figure 3.

To determine b, we observe that the time between two consecutive drops would either be the time between two
drops in a burst (x1, x2, x4 in Figure 3) or the time between drops belonging to consecutive bursts(x3 in Figure
3). Hence, we expect the times between consecutive drops to form two clusters. We assume that these two
clusters are Gaussian and use the Expectation-Maximization (EM) algorithm [DLR77] with Gaussian mixture
model to determine these clusters. Since the latter can be assumed to be much larger on average, the 95th

percentile of the Gaussian distribution with smaller mean is taken to be b.
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3.3.3 Defining Correlated Bursts

Having classified drops of the 2 flows into bursts, we need to define correlated bursts, i.e., those that are likely
to have occurred at the same PoC. Requiring two bursts to have occurred during the exact time interval may
be too strict. Requiring them to just overlap could lead to false positives. Therefore, we define two bursts to
be correlated if and only if the overlap of the two bursts consists of more than some fraction f of the drops
of each burst. We call f the overlap ratio. For instance, in Figure 4 a burst of 4 drops overlaps with a burst
of 2 drops. The overlap contains all the drops of F2’s burst and 3 out of 4 drops of F1’s burst. Hence, these
bursts would be considered correlated if f ≤ 0.75 and not, otherwise. Thus, SCONE calculates µ1(µ2) to be
the fraction of drops of F1(F2) that belong to correlated bursts as defined above. Note that µ1 and µ2 need not
have the same value since each flow could traverse other PoCs, too. As mentioned earlier, our use of correlated
bursts removes the need to use the parameter δ.

Burst2

Burst1

Received Packet
Dropped Packet

Flow F   2

Flow F   1
overlap

T

T

Figure 4: Motivating and defining overlap ratio

4 Simulation Experiments

In this section, we present the results of our simulation experiments. First, we describe our simulation setup
which is similar to the setup used in [RKT00]. Then, we present the results of experiments with various topolo-
gies. Finally, we use multimedia traces to demonstrate that SCONE can replace active probes with passively
observed flows that send adequate traffic.

4.1 Methodology

We ran ns-2 simulations with each of the 4 target topologies. Each link in Figure 1 was replaced by 2− 3 links
in the simulated topology. This was done to better simulate wide-area paths. The one-way delay along each
simulated link was chosen uniformly at random between 3ms and 7ms. Each flow had at most 2 shared PoCs
and 2 non-shared PoCs. The capacity of a PoC was chosen uniformly at random between 20 and 40Mbps. This
ensured that we simulated various values of shared congestion. The capacity of the other links was 1000Mbps.
Each PoC had cross traffic consisting of 10 − 15 flows. At least 75% of these flows were TCP flows. The rest
were exponential “on-off” CBR flows with a maximum rate of 300Kbps and average on and off times of 0.5s.
Each experiment had two probe flows whose sending and receiving times were used by SCONE to calculate
µ1, µ2, estimates of shared congestion for the two paths. We count each of these estimates as one datapoint
in our plots. Each simulation ran for 320s where probe flows start at 20s and background flows start at 0s.
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Unless otherwise specified, we used probe flows sending UDP packets of size 40 bytes every 10ms in both
ns-2 simulations and wide-area experiments. We repeated experiments for each set of parameters 100 times
using random initial seeds.
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4.2 Parameter Selection

We conducted the first set of simulations to explore parameter selection. We did this for the only two parameters
that SCONE uses, probing period and overlap ratio. The results of varying probing rates with an overlap ratio
of 0.7 in the iY Y topology in Figure 5. In this figure, we plot the CDF of the absolute value of estimation error
(the difference between SCONEs’ estimate and the actual fraction of shared drops) obtained with SCONE for
probing periods of 5,10,15 and 20ms. We did not use larger probing periods since we observed that many bursty
loss periods lasted no longer than 20ms and many shared losses were not correlated. This plot shows that there
was a gradual decrease in accuracy with increasing probing periods. The relatively large difference between
probing periods of 10ms and 15ms indicates that 10ms provides the best tradeoff between overhead and
accuracy. We obtained similar results for other topologies and overlap ratios. In absolute terms, the performance
with a 10ms probing period is that the estimation error is no more than than 0.2 in 95% of the experiments.

We also conducted experiments to evaluate the effect of overlap ratio, f , on SCONE’s performance. Figure 6
plots the CDF of the absolute estimation error for overlap ratios from 0.1 to 0.9 for a probing period of 10ms.
This plot shows that a large overlap ratio of 0.9 and a small overlap ratio of 0.1 both perform poorly. The reason
is that f = 0.9 results in underestimation of µactual while f = 0.1 results in overestimation. We also see that
an overlap ratio from 0.5 to 0.7 provides the best results. Based on the above discussion, we recommend the
use of 0.7 as the overlap ratio and 10ms to be an appropriate probing period. Our results show that deviations
from these values degrade performance smoothly and slowly.

4.3 Target Topologies

We ran experiments to measure the performance of SCONE with each of the four target topologies, iY, Y,
iYY and YiY. These are plotted in Figures 4.2, 4.2, 4.2 and 4.2 respectively. We plot the error of SCONE’s
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Figure 7: iY Topology
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Figure 8: Y Topology
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Figure 9: iYY Topology
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Figure 10: YiY Topology
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Figure 11: Passively observed flows in the iY Y topology.
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estimates versus the actual fraction of shared drops in each of these plots. These plots provide us with two key
observations. These show that, for each topology, our experiments included values of shared congestion from
0 to 1. These plots also show that, for each topology, the absolute estimation error is no more than 0.2 in 95%
experiments.

4.4 Passive Probes

Probe flows sending 40 byte packets every 10ms generate a relatively large packet overhead of 100 packets/sec.
We conducted experiments to investigate if SCONE can use passively observed application traffic as probe
flows. These experiments simulated a source using an overlay to split an MPEG stream over two overlay paths
to the same destination [NZ03]. In the absence of a standard multiple-description coding, we simply sent odd
packets of the MPEG stream on one path and even packets on another path. Figure 11 plots the results of
using SCONE with such multimedia traffic. This plot shows that SCONE’s performance is almost the same
as obtained with active probes, i.e., the absolute estimation error is not more than 0.2 in 95% experiments.
The multimedia streams we used sent one packet every 12ms on each path which is close to the probing
period we used. In general, most multimedia streams send one frame every 30ms and each frame consists of
multiple packets. All such streams which send one packet every 10ms can be passively observed by SCONE.
Note that application traffic uses varying packet sizes. A focus of future work is to quantify the dependence of
variable-sized probe packets on SCONE’s performance.

5 Wide-area Experiments

To evaluate SCONE on a large and diverse set of IP paths, we used PlanetLab [Pla03], a global overlay network
with over 300 nodes at more than 140 sites. To measure the accuracy of the estimates computed by SCONE
for two paths between PlanetLab nodes, we needed to know the number of drops on all shared IP links of
the paths. This was clearly not possible without extensive network support. Hence, we used a novel method
of concatenating IP paths to verify the accuracy of SCONE without such information. In this section, we first
explain our method of concatenating IP paths. Then, we describe our experimental setup and datasets. Finally,
we provide the results of our experiments.

5.1 Concatenated IP paths Method

We used a novel method of concatenating IP paths since we had no information on shared congestion between
two arbitrary IP paths between Planetlab nodes. We explain our method of concatenated IP paths for the Y iY
topology shown in Figure 1(d). We constructed the Y iY topology by choosing 6 random PlanetLab nodes for
each of S1, S2, R1, R2, M1 and M2. We used SCONE to start probe flows from S1 and S2. Instead of sending
them on direct IP paths to R1 and R2, we used application-level routers at each node that sent packets from
S1 (S2) to M1, M1 to M2 and M2 to R1 (R2). Thus, we created two paths, each consisting of 3 concatenated
IP paths, that formed the Y iY topology. These two paths shared all PoCs on the IP path between M1 and M2.
Hence, packets received by M1 and not received by M2 were drops at shared PoCs. However, the IP paths from
S1 (M2) to M1 (R1) and S2 (M2) to M1 (R2) were likely to have last mile IP links near M1 (M2) in common. A
PoC among these links was a shared PoC whose drops were not caused on the IP path from M1 to M2. Hence,
including these drops would give us an upper bound µmax on µactual of each path. Excluding these drops would
give us a lower bound µmin on µactual. Note that µmax is trivially 1 for the above setup. Figure 12 shows an
experimental setup involving 8 PlanetLab nodes for which µmax was not 1 whenever drops occur on the overlay
link from Si to Ni. Traceroutes along the the IP paths from S1 to N1 and S2 to N2 can be used to make sure
that they do not share any link and hence, do not share any PoC. Note that, the other topologies can also be
generated by concatenating appropriately created IP paths. As shown in Figure 12 for the Y iY topology, these
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Figure 12: Experimental setup with concatenated IP paths for the Y iY topology; µmax need not be 1.

can be created such that µmax need not always be 1. The above method increases the average one-way delay
and also introduces overhead at the application-level routers. We believe that these do not affect the validity of
our results.

5.2 Experimental Setup

For each experiment, we chose randomly chosen nodes of Planetlab. Multiple nodes exist at most Planetlab
sites. No two nodes located at the same site were chosen to be a part of the same experiment. In each experi-
ment, We used flows with lifetimes of 600s periodically sending UDP packets of size 40 bytes as our probes.
The application-level routers, senders and receivers saved the local times at which packets were forwarded. We
used this information to deduce the overlay links on which each packet drop occurred. We then compared the
estimate µ computed by SCONE with the range [µmin, µmax] of possible values. Note that SCONE computes its
estimate using the traces from end-hosts only. Since Planetlab is a shared infrastructure not managed by us, our
process would sometimes be blocked for significant time intervals. Hence, after synchronizing the two flows,
SCONE only considers those times during which both flows were sending packets. Note that µmin and µmax

can be calculated with and without including such drops that were sent when one of the flows was inactive. For
all our experiments, we verified that these two values did not differ significantly. We also collected traceroutes
along IP paths to verify our assumption that certain IP paths do not share an IP address, and hence do not
share a PoC (e.g., S1 to N1 and S2 to N2 in Figure 12). We conducted our experiments in March, June and
July of 2003. We used about 100 experiments for Y, iY, Y iY topologies and about 500 experiments for iY Y
topologies. The asymmetry in the number of experiments was because we used the iY Y topology to fine-tune
the design of SCONE before experimenting with the other topologies. We did not consider about 35% of our
experiments in which at least one path had less than 30 drops (0.05% loss percentage).

5.3 Experimental Results

For each topology, we obtained experiments with various sizes of the interval [µmin, µmax]. Experiments with
large sizes of the interval cannot be used to verify the accuracy of SCONEs’ estimate, µ. Hence, we consider
only those experiments in which µmin and µmax do not differ by more than 0.1. We show a scatterplot of the
estimation error (µ − µmin) versus µmin with the 4 topologies in Figures 13, 14, 15 and 16. We see that the
estimates are mostly less than the actual amount of shared congestion. Also, the absolute estimation error is
less than 0.2 (0.3 if it is calculated as µ−µmax) in about 80% of the experiments for all the topologies. We plot
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Figure 13: iY Topology
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Figure 14: Y Topology
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Figure 15: iYY Topology
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Figure 16: YiY Topology
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Figure 17: CDF of the Absolute Estimation Error
for all Topologies
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Figure 18: Demonstrating the Influence of Little
Bursty Behavior on SCONE’s performance.

the CDF of the absolute estimation error for each topology in Figure 17. The results with the Y iY topology
are slightly better than with the other topologies. Since these experiments were conducted at a different time
than the others, we believe that this difference is just because of random effects. We now discuss why some
experiments had false positives (a large positive estimation error) and some others had false negatives (a large
negative estimation error).

False Positives: In the above mentioned figures, we see a few cases of a large positive estimation error. For
instance, in Figure 16, we notice two experiments with a µ close to 1 and a µmin close to 0. For these ex-
periments, we analyzed the traceroutes of the non-shared IP paths (S1 to N1 and S2 to N2 in Figure 12. We
noticed that these paths actually had one or more common IP addresses in the traceroute corresponding to a
trans-Atlantic link. Hence, we believe that the actual fraction of shared congestion is actually close to 1 and
hence, these experiments are actually not false positives.

False Negatives Caused by Random Losses: We noticed that SCONE failed for most experiments involving
Planetlab nodes at Intel Research at Pittsburgh, Intel Research at Seattle and Stanford University. These three
sites consistently exhibited no bursty loss behavior. Upon further investigation, we learned that the Intel sites
were severely rate limiting traffic. In fact, with probing rates of 20KBps, the probe traffic itself caused massive
congestion. Rate limiting is frequently done using RED-like schemes in routers (e.g., Cisco IOS software
[Cis03]). This would explain the consistently observed random drop behavior of these sites. All the results
presented in this paper do not include experiments involving these three sites.

Many experiments involving the four topologies which had large negative estimation error exhibited random
drops. Figure 18 illustrates this by plotting the percentage of drops that belonged to single-drop bursts. This
is plotted for experiments with absolute estimation error less than 0.2 and greater than 0.2. About 80% of
the former and 20% of the latter had less than 20% of drops in single-drop bursts. If SCONE rejected all
experiments that had more than 20% of the drops in single-drop bursts, it would reject about 30% of the
experiments. However, among the remaining experiments, SCONE would have a success percentage of 95%.
Whether SCONE can be augmented with mechanisms for the rejected experiments is a focus of ongoing work
for us. We believe that random drops occur either due to the use of RED as the queuing discipline (instead of
the droptail queuing discipline) or due to the occurrence of very short transient periods of congestion.
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Probing Period: With our experiments, we showed that probing periods greater than 20ms were not suitable
since some bursty periods did not last more than 20ms. With our wide-area experiments, we explored lower
probing periods. Specifically, with the Y iY topology, we sent probe flows of period 1ms. Then, we used
SCONE with these flows and with 10ms sub-flows extracted from them. We did this to compare the effects of
probing rate on the same paths at the same time. The results of using SCONE with the 1ms flows and 10ms
sub-flows are plotted in Figure 19. As we can see, very little is gained by using a probing period of 1ms.
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Figure 19: Scatterplot of SCONE’s estimation error with probe flows having a period of 1ms and 10ms sub-
flows extracted from these flows.

Synclag: For experiments involving the Y iY topology, we also verified that the estimated synclag value was
close to the actual synclag which can be roughly computed based on the one-way delay to the shared IP path.
In cases of two flows not sharing any PoC, the estimated synclag value was essentially random. Figure 20
shows the justification for calculating synclag as the value that maximizes the cross-correlation coefficient. In
this figure, we show that the cross-correlation coefficient and the number of correlated drops are all maximized
at the same assumed synclag value. We also verified that a synclag value of 500ms was indeed reasonable in
this experiment.

One conclusion from our results is that 10ms is a good probing rate. Higher rates do not help improve the
accuracy greatly but add to the overhead only. Also, SCONE for all the topologies provides an estimate at
most 0.2 (0.3) less than the µmin (µmax) actual value in at least 80% of the experiments. Estimates made by
SCONE rarely exceeded the maximum value of shared congestion. As shown above, initial analysis of some
experiments for which SCONE failed led us to believe that checking for random drops can be used to make
SCONE very good at the expense of not being able to work with some IP paths.

6 Conclusions

Applications such as multimedia streaming can limit the effects of congestion on one path by using multi-
ple paths that share the least amount of congestion. In this paper, we propose Shared CONgestion Estimator
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Figure 20: A Graph Plotting the Cross Correlation Coefficient and SCONE’s Estimates with Various Values
for Synclag

(SCONE), a tool that enables these applications to select such paths. SCONE is more powerful than previously
known techniques which merely detect shared congestion. SCONE can work with 4 topologies involving two
paths, 2 of which were not considered in prior work. Results of extensive simulations that we performed showed
that, the absolute estimation error of SCONE is at most 0.2 in 95% of the experiments. We also showed that
SCONE can replace active probe traffic with passively observe application traffic such as multimedia streams.
The results of wide area experiments using PlanetLab showed that SCONE’s absolute estimation error is at
most 0.3 in about 80% of the experiments. We investigated the reasons for the larger error of the remaining
experiments. We found that many of these paths exhibited random drops. We describe a preliminary method to
detect the occurrence of such random drops which allows SCONE to achieve 95% success. This comes at the
expense of not being able to work with 30% of the paths. A focus of future work for us is to enable SCONE to
work with paths that exhibit random drops.

References

[ABKM01] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient overlay networks. In
Proceedings of ACM SOSP’01, 2001.

[AWTW02] J. Apostolopoulos, T. Wong, W. T. Tan, and S. Wee. On multiple description streaming with
content delivery networks. In Proceedings of IEEE INFOCOM’02, July 2002.

[BLMR98] John W. Byers, Michael Luby, Michael Mitzenmacher, and Ashutosh Rege. A Digital Fountain
Approach to Reliable Distribution of Bulk Data. In Proc. of ACM SIGCOMM, 1998.

[CBK03] Yan Chen, David Bindel, and Randy H. Katz. Tomography-based Overlay Network Monitoring.
In Proc. of the Internet Measurement Conference(IMC), 2003.

16



[Cis03] Cisco IOS Software. www.cisco.com/warp/public/732/Tech/car/, 2003.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum Likelihood from Incomplete Data via the EM
Algorithm. Journal of the Royal Statistical Society, pages 1–38, 1977.

[FJ93] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/
ACM Transactions on Networking, 1(4):397–413, 1993.

[HBB00] K. Harfoush, A. Bestavros, and J. Byers. Robust identification of shared losses using end-to-end
unicast probes. In Proceeding of IEEE ICNP’00, Osaka, Japan, October 2000.

[JS00] W. Jiang and H. Schulzrinne. Modeling of packet loss and delay and their effect on real-time
multimedia service quality. In Proceedings of NOSSDAV, 2000.

[KB01] D. Katabi and C. Blake. Inferring congestion sharing and path characteristics for packet interar-
rival times. Technical report, MIT LCS, December 2001.

[KKS+03] Min Sik Kim, Taekhyun Kim, YongJune Shin, Simon S. Lam, and Edward J. Powers. A Wavelet-
based Approach to Detect Shared Congestion. Technical report, University of Texas at Austin,
Department of Computer Sciences, November 2003. Revised, March 2004.

[LSG01] Y. J. Liang, E. G. Steinbach, and B. Girod. Real-time voice communication over the internet using
packet path diversity. In Proceedings of ACM Multimedia, pages 431–440, Ottawa, Canada, 2001.

[Mil92] D. L. Mills. RFC 1305: Network Time Protocol(v3), March 1992.

[NZ02] T. Nguyen and A. Zakhor. Distributed video streaming with forward error correction. In Packet
Video Workshop, Pittsburgh PA, USA, 2002.

[NZ03] T. Nguyen and A. Zakhor. Path Diversity with Forward Error Correction (PDF) System for Packet
Switched Networks. In INFOCOM, San Francisco, USA, 2003.

[Pla03] PlanetLab. http://www.planet-lab.org, 2003.

[PQW03] V. N. Padmanabhan, L. Qiu, and H. Wang. Server-based inference of internet performance. In
IEEE INFOCOM’03, San Francisco, CA, USA, April 2003.

[RKB00] P. Rodriguez, A. Kirpal, and E. Biersack. Parallel-access for Mirror Sites in the Internet. In
INFOCOM’00, 2000.

[RKT00] D. Rubenstein, J. F. Kurose, and D. F. Towsley. Detecting shared congestion of flows via end-to-
end measurement. In Proceedings of ACM SIGMETRICS’00, June 2000.

[YF02] O. Younis and S. Fahmy. On efficient on-line grouping of flows with shared bottlenecks at loaded
servers. In Proceeding of IEEE ICNP’02, Paris, France, November 2002.

[YMKT99] M. Yajnik, S. B. Moon, J. F. Kurose, and D. F. Towsley. Measurement and modeling of the
temporal dependence in packet loss. In Proceedings of IEEE INFOCOM’99, pages 345–352,
1999.

[ZDPS01] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the constancy of internet path properties.
In Proceedings of ACM SIGCOMM Internet Measurement Workshop, November 2001.

17


