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Abstract— Recent work on media streaming has pro-
posed to exploit path diversity, i.e., the use of multiple end-
to-end paths, as a means to obtain better performance.
The best performance is achieved when the various paths
are independent in the sense that the two paths do not
share a Point of Congestion (PoC). However, topologies
used in media streaming applications do not meet the
assumption of Inverted-Y or Y topologies made by prior
work on detecting shared PoC. In this paper, we propose
a new technique called CD-DJ (Correlating Drops and
Delay Jitter) which solves this problem. CD-DJ is better
than earlier solutions for three main reasons. First, CD-
DJ overcomes the clock synchronization problem and
can work with most topologies relevant to applications.
Second, it provides applications with an estimate of the
fraction of packet drops caused by shared PoCs. This
information is more useful than a “yes/no” decision for
media streaming applications because they can use it to
choose a path based on the level of shared congestion.
Third, CD-DJ makes the estimation by correlating bursts
of packet drops in conjunction with the correlation of delay
jitter in a novel way. A key contribution of our work
is our evaluation methodology. We use a novel overlay-
based method to evaluate our technique extensively using
about 800 hours of experimental traces from Planetlab, a
global overlay network. Our results indicate that CD-DJ
calculates estimates which are at least within a factor of
0.8 of the actual fraction of shared drops for 80− 90% of
the flows. We also illustrate the advantage of using CD-DJ
with a simple streaming video application.

I. INTRODUCTION

The traditional approach to congestion control in the
Internet has been for end hosts to use AIMD (Additive
Increase Multiplicative Decrease) schemes similar to
those used by TCP. By using end host based measure-
ments, overlay networks such as RON [1] introduce the
concept of rerouting around IP links that cause packet
drops. In this paper, we refer to such links as Points
of Congestion (PoCs). Another recent approach to limit
the effects of congestion has been to use path diversity.
In [2], [3], [4], the authors propose to send suitably
encoded video streams on multiple paths to increase
their tolerance to network congestion. The reasoning

is that such multiple paths may not share a PoC. For
applications such as CDNs, and enterprise backups that
run on large scale distributed systems and inject large
amounts of data into the network, there are no known
methods to coordinate hosts distributed over the wide-
area for cooperative congestion management. Proposals
for congestion sharing such as Congestion Manager [5]
can be used only at a single host.

All the aforementioned approaches to adapt to con-
gestion in ways other than simple AIMD either assume
that multiple paths not sharing a PoC are known [2],
or achieve this goal using rapid probing to determine
loss rates etc. [1], [6]. In case of large scale applications
such as CDNs, application-level congestion management
is unknown. In fact, it is an open issue if such congestion
management would actually help these applications. We
believe that this is indeed the case. In this paper, we
propose CD-DJ (Correlated Drops and Delay Jitter), a
technique to estimate the fraction of packet drops caused
by shared PoCs of two paths on the Internet. We also use
multipath media streaming as an application to illustrate
various aspects of our technique. Media streams are
susceptible to bursty errors which result in degradation of
playback [2] [3] [4]. By using multiple overlay paths the
size of such bursty errors can be reduced which results
in better playback quality.

Prior work related to detecting shared congestion [7],
[8], [9] use the fact that most Internet routers employ
droptail queues which cause bursty drops [10]. Hence,
packets that traverse the PoC around the same time are
likely to be dropped or not dropped together. They are
also likely to have correlated delays and delay jitter.
One of the main limitations of these techniques is that
they cannot be applied to applications such as multipath
media streaming which violate the topology assumptions
of these techniques.

To estimate shared congestion between two paths, CD-
DJ obtains information about packet drops and delay
jitter using probe flows along the two paths. It calculates
the estimate by correlating bursts of packet drops in
conjunction with the correlation of delay jitter in a



novel manner. The main challenges in designing such
a technique are:

• Packets that traverse a PoC at around the same time
are likely to both get dropped or not. Similarly,
packets traversing a PoC at around the same time
are likely to be correlated in delay. Determining if
two packets traversed a PoC at the same time based
on their sending and receiving times is not easy
since the senders and receivers of the two flows
may not have synchronized clocks. Even if they
are synchronized, different one-way delays from the
senders to a PoC cannot be measured. We refer to
the sum of the clock skew and the difference in
one-way delays as synchronization lag (synclag).

• Links other than the PoC could be responsible for
a significant fraction of end-to-end delay. Drops
may occur at multiple PoCs some of which may
not be shared. Both these create a lot of noise
which adversely affects the correlation among two
flows sharing a PoC. Such noise could cause false
positives and false negatives.

• Evaluating any technique to determine shared PoCs
is not easy since information about PoCs is not
readily available from the network.

The following are the main innovations of our work:

• We provide a solution to overcome problem due
to synchronization lag. Our solution is to infer
the synchronization lag as the value that would
maximize the correlation among packet drops of the
two flows.

• Multiple PoCs may exist along the two paths and
only some of them might be shared. Given two
flows along these paths, CD-DJ produces an esti-
mate for each flow that represents the fraction of
drops of each flow that occur on a shared PoC. Such
an estimate is a natural rank of a potential path and
is more useful than a “yes/no” decision.

• Flows sharing a PoC may also be expected to
experience similar delays and delay jitter. However,
the amount of noise in delay jitter is very large
especially when the high latency links follow the
PoC. We therefore propose to use delay jitter con-
servatively.

• A key contribution of our work is our evaluation
methodology. We use a novel overlay-based method
using PlanetLab [11], a global overlay network, to
construct paths with shared PoCs. This method pro-
vides non-trivial (not equal to zero and one) bounds
on the fraction of losses that occured on shared

PoCs. Our results indicate that CD-DJ calculates
estimates which are at least within a factor of 0.8
of the actual fraction of shared drops for 80− 90%
of the flows.

This paper is organized as follows. We provide an
overview of the related work in Section II. In Section III,
we explain our goals and assumptions, and describe
our complete solution. In Section IV, we describe our
evaluation strategy and our implementation experiences.
We present the results of our experiments in Section V
and discuss several open issues in Section VI. We present
our conclusions in Section VII.

II. RELATED WORK

Our work was motivated by previous studies on In-
ternet path characteristics [12] [13] [14] [15], proposed
approaches to detecting PoCs [7] [8] [9] [16] [17], and
various applications which exploit path diversity [2] [3]
[4] [18] [19].

It is well known [10] that the droptail queues used
in most Internet routers lead to periods of bursty loss.
Jiang et al. [12], Sanneck et al. [13], and Yajnik et al.
[15] use discrete-time Markov chain models, particularly
the 2-state Markov chain model (also known as the
Gilbert model), to study the temporal dependence in
packet loss. In the Gilbert model, a droptail queue has
two states: lossless and loss. The loss state represents
the periods of bursty losses. They show that the Gilbert
model captures temporal dependence with a good trade-
off between accuracy and complexity. Yajnik et al. found
that the correlation timescale of packet loss is 1000ms

or less. In [14], Zhang et al. show that the fine time scale
correlation is caused by trains of consecutive losses.
They also find that the duration of loss runs is very short,
220ms at the 95 percentile.

There are a few solutions that have been proposed
for detecting if a pair of flows share a PoC. In [7],
Rubenstein et al. use cross and auto correlation of delay
and loss of Poisson probes to detect a shared PoC. They
prove that the cross correlation of delay or loss is greater
than the autocorrelation when two flows share a PoC.
An implicit assumption made by them is that arrival
times of Poisson probes in the queue at a shared PoC
still follow a Poisson distribution. However, this need
not be true especially if there is significant jitter before
the shared PoC. Harfoush et al. [9] use loss probabil-
ities of single-packet and packet-pair probes (so-called
conditional Bayesian probing) to identify shared losses.
They use only simulations to evaluate the Bayesian
probing technique. The applicability of their scheme in



real wide-area networks is not known. More recently,
Katabi and Blake [8] measure Renyi entropy of packet
inter-arrival times to infer shared PoCs and then clustere
flows which share the same PoC. This technique does not
perform well under heavy cross traffic, which limits its
applicability. In [16], Padmanabhan et al. study the use
of various sampling methods to characterize lossy links
to a server from clients. They use passively observed
client-server traffic to identify lossy link(s) from the
client to the server. In [17], Younis et al. use in-band
delay measurements to cluster clients sharing the same
congested route to a server.

Recent work [2], [3], [4] propose the use of multiple
paths to improve the performance of media streaming.
Besides the IP path, they assume the use of an overlay
node to construct an alternative path. This corresponds to
the triangle topology shown in Figure 1. Prior solutions
to detecting shared PoCs cannot be applied in this case
since they are limited to the Y and Inverted-Y topologies
in Figure 1.

Our work differs from prior work in three significant
ways:

• Other than making a binary decision on the ex-
istence of a shared PoC, we can provide an esti-
mate of the fraction of drops of each flow caused
by shared PoCs. When no completely independent
paths exist, such information can be useful for
applications to determine which alternate paths to
be used.

• All prior solutions can work only with the so-called
Inverted Y and Y topologies. This is because the
information on the order and/or times of pack-
ets traversing the shared PoC required by earlier
solutions is not available in general topologies.
Our solution overcomes the clock synchronization
problem and can work with most topologies relevant
to applications.

• Most prior work do not verify their techniques in
a variety of wide-area scenarios. In contrast, we
extensively evaluate our CD-DJ technique based on
800 hours of experimental traces collected from 45
sites in PlanetLab, a global overlay network.

III. DESIGN

We first describe our goal and assumptions. We then
discuss technical challenges to achieve our goal. We
finally present our approaches in detail.
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Fig. 1. (a) Y-topology (b) Inverted-Y topology (c) Triangle
Topology

A. Goals and Assumptions

Given two paths in the Internet, our goal is to estimate
the fraction of shared congestion using probe flows along
the paths. Our technique outputs the fraction of packet
drops of each flow caused by shared PoCs. We do not
want to merely detect shared PoCs for two reasons:
(1) Such estimates of shared congestion are natural ranks
for potential paths and are much more useful than a
“yes/no” decision. (2) There may be multiple PoCs along
a path.

In this paper, we use two types of probing mecha-
nisms: (1) active probing: probe the network by sending
periodic UDP packets; (2) passive monitoring: monitor
continuously backlogged FTP-like TCP traffic. For the
TCP flows, we assume that we can observe packets at
both the senders and the receivers using a tcpdump[20]-
like program.

We make two assumptions about the Internet: (1) Most
routers use droptail queuing disciplines. (2) Most traffic
is TCP-based. Prior work [12] [13] [14] [15] on mea-
suring and monitoring Internet path characteristics show
that Internet paths experience bursty packet drops which
is observed in [10]. Data analysis from the Sprint ATL
IP Monitoring Project [21] shows that about 95% traffic
is TCP-based.

We assume that the the node running the CD-DJ
technique can be requested by the application to estimate
shared congestion between two paths. Upon such a
request, this node initiates two probe flows on each
of the paths. In case of passive probing, it initiates
monitoring processes to passively monitor the probe
flows. At the end of some pre-specified probing interval
it retrieves the sender and receiver logs and runs the
CD-DJ technique on these logs. In the multipath media
streaming application, the node running CD-DJ may be
the sender of the media stream. It will initiate probing
on various candidate paths. The sender runs the CD-DJ
technique on the logs of these probing flows. It chooses



the path with the least estimate of shared congestion as
the alternative path.

B. Challenges

To estimate the fraction of drops at shared PoCs in
a general topology, we take the approach of correlating
packet drops of two flows. The intuition behind it is that
packets of two flows traversing a PoC at roughly the
same time are either both dropped or not dropped. We
face several technical challenges when we try to correlate
packet drops of two flows.

• Synchronization
When the senders of two flows are not synchronized
and the delay from each of them to a shared PoC is
not known, it is hard to obtain information regarding
the order in which packets of the two flows traverse
the PoC. However, this kind of information is gen-
erally required for correlating two flows to detect if
they share a PoC.

• False Positive
Though the period of bursty packet drops is usually
200ms or less, some bursty packet drops may last
longer than that. When one flow is experiencing
a long period of bursty drops caused by a PoC,
another flow is likely to have some packet drops
at a different PoC during this period even if they
are independent. This will give us false positive
information of the correlation of the two flows.

• False Negative
The packet drop probability is not necessarily 1
during a bursty loss period. This is because the
queue size of a droptail queue may drain or build
up in that period. This may cause two flows sharing
a PoC not to see simultaneous packet drops at the
shared PoC.

In the rest of this section, we will present our tech-
nique and explain how it tackles these challenges.

C. The CD-DJ Technique

We propose CD-DJ (Correlated Drops and Delay
Jitter), a technique that correlates packet drops and delay
jitter along the two paths to find the fraction of packet
drops at a shared PoC. The CD-DJ technique consists of
three stages:

• Determining the synchronization lag.
• Calculating µ1, µ2 (see Table I), the fraction of

correlated packet drops, i.e., drops that occurred at
the same time after synchronizing the sending times.

• Inflating µ1, µ2 using the delay jitter correlation of
the uncorrelated drops.

TABLE I

NOTATIONS USED IN THIS PAPER

Notation Comments
µ estimated fraction of packet drops at

the shared PoC of any flow
µ̂ real fraction of packet drops at

the shared PoC of any flow
µi estimated fraction of packet drops at

the shared PoC of flow i

µ̂i real fraction of packet drops at
the shared PoC of flow i

µmin lower bound of the fraction of packet
drops at the shared PoC of any flow

µmax upper bound of the fraction of packet
drops at the shared PoC of any flow

f overlap fraction
b burst interval

synclag synchronization lag
CCC cross correlation coefficient

1) Determining Synchronization Lag: Before we
can correlate packet drops and delay jitter, we need to
synchronize the two flows such that we can determine
which packets of the two flows traversed the shared PoC
at roughly the same time. In a general topology the
senders and receivers are not synchronized. The one-way
delay to a shared PoC may also be different for each flow.
These two factors lead to a non-zero synchronization lag
(synclag) We illustrate an example of synchronization lag
in Figure 2. The synclag of a flow F2 with respect to
flow F1 is the sum of the clock skew between its sender
and the sender of flow F1 (∆) and the difference in delay
from the senders to a shared PoC (d2 − d1). Subtracting
this value from the sending times of packets of F2 gives
us an estimate of the sending times of F2 in terms of
the clock used at F1’s sender. Since the clock skew is
bounded by the RTT between the two senders and the
delay to a shared PoC is bounded by the RTT of each
flow, the synclag itself is bounded by 2 ·RTTmax which
is not more than a second or two in today’s Internet.

Synclag makes it hard to determine the times at which
packets of the two flows traversed a shared PoC. Our
solution is to try various values of synclag and correlate
the drops of the two flows. We take the value that
maximizes the cross-correlation coefficient1(CCC) as the
synclag for the two flows in question. With this estimate
of the synclag, we can determine the fraction of drops
that occurred simultaneously in both flows.

To calculate the synclag, we generate loss indicator

1C(X, Y ) = E[(X−E[X])(Y −E[Y ])]
√

E[X2
−E2[X]]E[Y 2

−E2[Y ]]
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Fig. 2. An illustration of synchronization lag ∆ + d2 − d1 when
the two senders S1 and S2 start within ∆ of each other and have a
delay of d1 and d2 to the shared PoC

sequences for the two flows. Each sequence is a string of
0’s and 1’s each of which corresponds to a time interval.
A 1 indicates the loss of at least one packet sent in that
time interval. We assume various values for the synclag
and generate these loss indicator sequences with the
sending times “synchronized” using our assumed syn-
clag. We then calculate the CCC of these two sequences.
Since synclag is bounded by 2 · RTTmax, we generate
the CCC for all possible values in this range. The value
producing the maximum CCC is taken to be the synclag
of the two flows. Figure 3 shows a typical case where
the maximum cross correlation (and the results of our
technique) reached a maximum for the correct value of
synclag which is 0.5. For the remainder of our technique
we use synchronized sending times only.
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2) Calculating Fraction of Correlated Drops: As
mentioned earlier in Section III-B, packet drop informa-
tion contains noise which may cause both false positives
and false negatives when packet drops are correlated. We

tackle this problem by correlating bursts of packet drops
rather than single packet drops.

Previous work [12] [13] [15] on losses in the Inter-
net conclude that most losses in the Internet occur in
bursts lasting up to 200ms. They also conclude that the
time between consecutive bursts is much greater than
200ms. While bursty losses are a result of the droptail
queueing discipline used in most routers, TCP-related
congestion control is responsible for the comparatively
large time difference between consecutive bursts. Our
traces collected on PlanetLab also confirm the occur-
rence of bursty drops. In Figure 4, we show the CDF of
the number of consecutive packet drops of UDP flows
sending packets at a rate of 100Hz. It shows that more
than 20% of consecutive packet losses consisted of more
than one packet. The occurrence of bursty drops implies
that packets of two flows traversing a PoC at roughly the
same time are either both dropped or not dropped.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.05  0.1  0.15  0.2

C
D

F

Loss Run Length (s)

Fig. 4. Loss Run length

We consider two dropped packets to be in the same
burst if they were sent within a time b (burst interval) of
each other. Using this, we construct bursty loss periods
for each flow. We define two bursts to be correlated only
if the overlap of the two bursts consists of more than
an overlap fraction f of the drops of each burst. Our
estimate of µ1(µ2) is the fraction of drops of F1(F2)
that belong to such correlated bursts. Note that µ1 and
µ2 need not have the same value since each flow could
traverse other PoCs, too.

Figure 5 shows an example of how false positives
and false negatives can be avoided. In this example, we
assume all bursts except Burst1 of flow 2 are caused
by the same PoC and overlap fraction f is 0.5 (we
will explain parameter selection in Section V). Since the
overlap of Burst1 of flow 1 only contains 2 packets
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which is less than 5∗0.5 = 2.5, we decide that Burst1’s
are not correlated. As for Burst2, we decide they are
correlated because the overlap consists of more than 0.5
fraction of the packet drops of each burst though those
two bursts do not match exactly.

3) Correlating Jitter of Uncorrelated Drops: The
third challenge in Section III-B shows that two flows
sharing a PoC may not have all drops at that PoC
correlated because the packet drop probability during
a bursty loss period may not be one. This will cause
underestimation of µ. However, during a bursty loss
period of a PoC, packets traversing it at roughly the
same time may experience similar delay jitter when
the droptail queue at the PoC is draining (or building
up). This motivates us to inflate the estimate of µ by
correlating delay jitter. Given the fact that end-to-end
delay in today’s Internet has large noise, We do not
attempt to correlate jitter for the whole life of the flows.
We consider the correlation of delay jitter of uncorrelated
drops only. This use of jitter in conjunction with packet
drops as a means to estimate shared congestion is a novel
aspect of our solution.

For each uncorrelated packet drop, we calculate the
jitter observed around this dropped packet as the differ-
ence in delays of the closest previous and next received
packets. We calculate the jitter experienced around the
packet of the other flow that was sent closest to this
dropped packet. The basic idea is to decide the proba-
bility that an uncorrelated drop is actually caused by a
shared PoC based on how similar these two delay jitters
are. We add this probability to the estimated number
of packet drops on shared PoCs when we calculate µ.
We use cos(2α) as the probability that this drop is
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Fig. 6. Example of overlaps of bursty drops

on a shared PoC where α is the angle between the
y = x line and the line joining the origin and the point
whose coordinates are the two delay jitter samples (see
Figure 6). This function is chosen so that we add a large
value when the two jitter values are equal and a small
value if they differ by a lot. Note that we consider drops
with a positive cos(2α) only to ignore negative values
returned by uncorrelated jitter. Since two random jitter
values themselves could contribute a positive value on
average, we need to compensate for this overestimation.
By considering all these factors, we inflate the the
estimate µ by max(Σmax(cos(2α),0)−0.3·n

0.5·N , 0). Here, n and
N are the number of uncorrelated and total drops of that
flow. The complete derivation of this is provided in the
longer version of the paper[22].

IV. EVALUATION METHODOLOGY AND

IMPLEMENTATION

In this section, we present our evaluation methodology
and implementation experiences.

A. Evaluation Methodology

To evaluate our technique thoroughly, we needed to
observe two flows along paths that have drops caused by
shared PoC(s). To determine the accuracy of the estimate
µ for each flow, we also needed to be able to compare
it with µ̂ (see Table I), the actual fraction of drops on a
shared PoC. We needed to be able to do this for various
values of µ̂ and over a diverse set of nodes that spanned
the Internet.

To determine µ̂ for two IP flows, we need access to
detailed information about drops at various PoCs. Since
this is not possible, we used an overlay-based approach.
We explain this using an example. Consider the abstract
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Fig. 7. The Various Topologies Used in Our Experiments

3 − Y V topology in Figure 7. This topology shows
the case of two flows with different senders S1, S2 and
receivers R1, R2. The path taken by the two flows has a
shared part from M1 to M2. We can create this topology
at an overlay level by using overlay routers at M1 and
M2. The two flows routed on this overlay thus share
the overlay link from M1 to M2 and all PoCs on this
overlay link. Using information about packets received
at M1 and not received at M2 we can determine all drops
at shared PoCs between M1 and M2.

The drops on the overlay link from M1 to M2 may
not be the only drops on shared PoCs. Paths from M1

to each of S1, S2 and M2 are likely to have some IP
links in common. A PoC among these links would be a
shared PoC whose drops are not caused on the overlay
link from M1 to M2. Hence, counting the drops only
on the overlay link from M1 to M2 can ignore some
drops on shared PoCs and would give us µmin, a lower
bound on µ̂. Counting the drops on all overlay links from
M1 and M2 would include drops caused by all possible
shared PoCs. Thus, we can also obtain µmax, an upper
bound on µ̂. For the 3−Y V topology, µmax turns out to
be 1. The 4−Y V topology (see Figure 7) is an example
of a topology that need not have a µmax of 1.

In summary, we use the overlay approach to eval-
uate the CD-DJ technique. The evaluation consisted

of comparing the estimate µ of CD-DJ with a range
[µmin, µmax] of possible values. A disadvantage of the
overlay approach is that this range can be very large.
The use of overlays is purely for evaluation purposes
and does not limit the applicability of our technique.

Figure 7 shows the various topologies that we used in
our experiments. Four hops were used in most topologies
since this provided instances where µmin and µmax were
both not trivial (0 and 1 respectively). In order to evaluate
CD-DJ with a diverse set of nodes, we used PlanetLab
[11], a global overlay network consisting of 45 sites
around the world.

B. Flow Generation

We used two kinds of flows: UDP and TCP. We used
system timers to implement the Constant Bit Rate UDP
flows. The TCP flows were generated using a simple
TCP server that would sit in a loop calling blocking
“send” system calls for a pre-specified period of time.
The overlay routers forwarded packets from the previous
hop to the next and collect information on which packets
were forwarded. We used such information to deduce the
overlay-links on which each packet drop occurred. Com-
pared to two flows using one end-to-end IP path, these
overlay-based flows differed in two aspects: (1) The
one-way delay (RTT) and jitter seen by these flows is
much larger in the multi-hop topologies. (2) Application
overhead is encountered at each overlay router twice.

Generating TCP flows that could be routed on the
overlay was not easy. With UDP flows, overlay paths
could be specified by using the first-hop router as the
destination for the sender. Doing so with TCP led to
the creation of an end-to-end connection from the server
to the first hop router. What we needed was a way to
circumvent TCP dynamics between the server and the
first hop router. Our inability to use IP tunneling on
PlanetLab meant that we would have to implement such
tunneling at the user-level.

We implemented a TCP proxy that worked as follows
(see Figure 8). The TCP server would be given an
inactive port on the local machine as the client address.
All packets sent to this port would be sniffed using pcap
library [20] and tunneled using UDP to the first-hop
router. We used truncated TCP packets as payloads for
the UDP packets in order to prevent IP fragmentation.
The encapsulated TCP packets received by a proxy at the
receiver’s side would send the TCP packet to the local
client by spoofing the destination port. Most machines
return a Reset(RST) message if a TCP host attempts
to open a connection to an inactive port. In order to
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prevent this, we filtered all incoming RST messages. The
proxy program had about 250 lines of code. In periods
of high bursts, it sometimes did not catch all relevant
packets. This caused unnecessary drops and reduced the
throughput of the TCP flow.

While the above algorithm worked, it required “root”
privileges that we did not possess on the PlanetLab
machines. To solve this problem, we used our personal
machines for the hop running the proxy, the TCP server
and the TCP client. The PlanetLab machines ran overlay
routers that forwarded UDP-encapsulated TCP packets.
Since all machines on which we had “root” privileges
were on the same LAN, all our TCP experiments had
the same machine as the first and last hop. This is the
reason why we used the 3 − V Y topology (Figure 7)
for TCP experiments. Since all TCP experiments shared
a common hop (our personal machine), more than one
TCP experiment could not be run simultaneously. This
limited our ability to collect TCP traces.

C. MPEG Streaming

To better motivate the use of our technique with an
application, we conducted simple experiments involving
MPEG streams using multiple paths. Our experimental
setup was partly motivated by the architecture in [2]. We
used an MPEG server that would packetize an MPEG file
using the recommendations in [23]. It would then send
out even-numbered packets on an overlay path P0 and
odd-numbered packets on two overlay paths P1 and P2.
All the three paths started at a host S and terminated at
a host R. Paths P2 and P0 shared at least one overlay
link other than S and R. P1 did not share any overlay
link with P0 and P2. This was done so as to obtain an
independent pair of paths (P0 and P1) and a dependent
pair (P0 and P2). For simplicity, we packetized only the
MPEG frames and assumed that all the MPEG headers

were received. We reconstructed MPEG files using the
data received from the dependent and independent pair of
paths. The reconstructed MPEG packets were compared
to the original. The actual metric we used was the
mean square error (MSE) of the uncompressed YUV
[24] frames of the received and original video files. We
obtained 3 MSE values - one for each of Y, U and V
frames for each reconstructed file.

Using the MPEG server described above, we wanted
to motivate why independent paths need to be chosen and
how our technique would help in choosing such paths.
We chose two overlay links that had been observed to be
lossy. One lossy link would be in P0 and P2 while the
other would be in P1. The results of such an experiment
are highly dependent on the loss characteristics along
each lossy link which could be caused by the flows
themselves (the lossy link on the dependent paths carried
more traffic). Running this multiple times would not
solve this problem. Instead, we ran two MPEG servers
with the lossy link on the dependent paths of the first
server being on the independent path of the other and
vice versa.

The topologies we used are the 2 − V V and 3 − O

topologies shown in Figure 7. Table II shows the paths
used in the two topologies we used for the MPEG
experiments. With the 2 − V V topology, the dependent
paths were identical. One of the two simultaneous MPEG
servers used the path through M1 as the dependent path
and the other used the path through M2. In case of the
3−O topology, the lossy links were the links to R from
M4 and M5.

TABLE II

MPEG TOPOLOGY EXPLAINED

Topology Server Dependent Dependent Independent
Number Path 1 Path 2 Path

2 − V V 1 SM1R SM1R SM2R

2 − V V 2 SM2R SM2R SM1R

3 − O 1 SM1M4R SM2M4R SM3M5R

3 − O 2 SM3M5R SM2M5R SM1M4R

V. PERFORMANCE ANALYSIS

In this section, we present the results of extensive
experiments conducted on PlanetLab. We collected about
800 hours of traces from overlay-based experiments over
a period of two weeks. Each experiment consisted of
running two flows for a period of 600s. Unless specified
otherwise, the flows used sent UDP packets of size
40 bytes at a constant frequency of 100Hz. We first
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explore the reasons behind certain choices we made in
designing our CD-DJ technique. These include parameter
values and design decisions. We then look at results of
UDP experiments with various topologies. We present
the results of running CD-DJ with TCP flows next. We
end our evaluation section with results that illustrate how
CD-DJ may be used with an video streaming application.

A. Evaluation and Design Choices

In this subsection, we support the various choices
that we made in designing the CD-DJ technique. We do
this by plotting the results of experiments of the 1 − I

topology (see Figure 7). Though this is a trivial case in
which we expect µ to be 1, this helps us benchmark
our technique. By determining if drops (and delay jitter)
of two flows using the same path are correlated, we
can validate the assumptions we made in deriving our
technique (such as bursty losses etc.). We also show the
results for the 1 − II topology in which the two flows

use independent paths i.e., do not share any PoC. The
reason for analyzing independent paths is to measure the
false positive rate of the technique. The actual value of
µ is 1 when both flows use the same path and 0 when
they use independent paths.

We do not consider experiments in which at least one
of the flows had less than 0.05% of its packets dropped.
The rationale behind this is that at such low loss rates,
losses occur only sporadically and applications may use
such paths without hesitation. The 0.05% fraction was
chosen rather arbitrarily but our results were not sensitive
to this fraction. Also, we did not expect all drops caused
by a shared PoC to be classified as shared drops by
our technique for reasons discussed in Section VI. For
the purposes of this discussion, we define CD-DJ to be
successful with a flow if the estimate µ is at least 0.8 · µ̂.
We chose this definition as a concise way to state our
results.

1) Pathological Sites: In analyzing our experiments,
we determined that four (out of forty four) sites con-
sistently underestimated the value of µ (i.e., it was less
than the µ̂). Figure 10 shows the fraction of successful
experiments involving each site on PlanetLab. We see 4
sites that have less than 0.5 success rate whereas others
have significantly better success rate. We therefore do not
consider these sites in any of our results. The figure also
shows that removing these pathological sites increases
the success fraction of all other sites barring one. Such
removal of pathological sites is justified because we
believe that even for real applications, such sites may
be determined by running two flows to this site and
determining if the technique produces consistently good
values for µ. The CDF of µ output by the CD-DJ
technique is shown in Figure 9 with and without the
pathological sites. For the rest of our analysis, we do
not consider these pathological sites.

The results shown in Figure 9 indicate the limit on
the performance achievable since this is the case where
all drops are on a shared PoC. As we can see from this
figure, the µ of more than 80% of our experiments was
at least 0.8µ̂ . Another encouraging aspect is that most
unsuccessful experiments estimated µ to be at least 0.5 ·
µ. The results for the 1− II topology (not shown here)
indicated that there were few false positives and all had
estimates of µ less than 0.2.

2) Burst Interval: We first motivate the need to
consider bursts of drops. Figures 11(a), 12(a) show the
performance of our scheme assuming that drops are
classified to be in the same burst if they were sent within
b of each other, for different values of b. A value of 5ms
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Fig. 11. Results with 2 Flows Using the Same Path
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for b implies that every drop is considered as a stand-
alone burst whereas a value of 15ms for b implies, in the
case of our 100 Hz UDP flows, that all consecutive drops
are considered as belonging to a single burst. The graphs
plot the cumulative distribution function (CDF) of the
estimate µ of the CD-DJ technique. The graphs show that
there is not much difference between 55ms and 105ms.
The estimates µ are about 5% larger using 55ms as
compared to using 15ms. However, large burst intervals
also lead to increased false positives as is shown in
Figure 12(a). Notice that, with 55ms, CD-DJ estimates
µ to be as high as 0.6 in some cases. In contrast, µ does
not exceed 0.2 for any case with 15ms. We conclude
that using a burst value b of 15ms performs best.

3) Parameter Selection: In Section III, we explained
that we do not consider two bursts of drops to have
occurred at the same PoC unless more than a fraction
f of the drops occurred during their burst intervals.
In Figures 11(c), 12(c) we show the results obtained

with different values of the overlap ratio f . The trade-
off involved in choosing f is that it should be small
enough to consider all shared drops and large enough to
not cause false positives. The results show exactly this
behavior for 0.5: the case f = 0.5 is close to f = 0.9 for
the 1 − I topology and close to f = 0.1 for the 1 − II

topology.
4) Sensitivity of Probing Rate: Figures 14 and 15

show the sensitivity of CD-DJ to the probing rate. The
100Hz probing rate we used generated an overhead of
4KB/sec. In systems where this is prohibitive, probing
with lesser frequency could be done with a penalty in
accuracy as seen in the figures for the 1− I and 1− II

topologies.
5) Motivating Conservative Jitter Correlation:

As we discussed in Section III. there are cases when
drops on a shared PoC may not be correlated. Hence
we augmented the CD scheme (that correlates packet
drops only) to include correlation of delay jitter (for
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uncorrelated drops only) to derive the CD-DJ technique.
Figures 11(b), 12(b) show the benefits of doing so. We
see a clear improvement in the performance of CD-DJ
over CD without any significant increase in false positive
rate (as seen in the results for the 1 − II topology).
We believe that this is a result of our using delay jitter
correlation conservatively.
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B. Multi-hop Topologies - UDP Flows

In the previous subsection, we used the results of
experiments conducted for two flows in the 1 − I and
1−II topologies to study the validity of our assumptions
and our technique. We now provide results of experi-
ments conducted using multi-hop overlay topologies that
enabled us to create flows that did not share all PoCs.
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The results of the 1− I and 1− II topologies could be
verified using the CDFs because in every experiment the
actual fraction of shared drops µ̂ was a constant (1 and
0 respectively). With multi-hop topologies, we evaluated
the CD-DJ technique by verifying that µ lies between
0.8µmin and µmax. We used the 0.8 factor because of
our definition of a successful experiment.

Figure 13 shows where µ lies in relation to 0.8µmin

and µmax for various multi-hop overlay-based topolo-
gies. All figures except Figure 13(f) show for each
flow, the estimated value µ, the lower bound µmin that
we know from our overlay router traces. The graphs
also show the 0.8µmin line, all points above which are
deemed successful. Figure 13(f) plots the CDF of µ for
the 4-hop topologies 4− I and 4− II . In each of these
graphs, the µ calculated in about 80% of the experiments
were above 0.8µmin.

C. TCP Flows

As we discussed earlier in Section IV, we used the 3−
V Y topology for evaluating the CD-DJ technique with
TCP flows. The TCP flows we used were continuously
backlogged flows that lived for 600s. Since both TCP
flows may not be active at all times, we did not consider
the TCP flows during time intervals when either of them
had been inactive (which means that it was not probing
the network). The values of µ obtained as compared
to [µmin, µmax] for the experiments involving the TCP
flows are shown in Figure 16. Since the µmax for the
3−V Y topology is 1, we do not plot the corresponding
graph for it. For the 3−V Y topology, we see that about
80% of the experiments resulted in an estimate that was
at least 0.8µmin.

Figure 17 shows the results of running the TCP flows
using the 2 − I topology which is the equivalent of the
2 − I topology for the UDP flows. The graphs shows
that most values of µ were between 0.55 and 0.7. This
leads us to believe that CD-DJ may have to be tuned for
TCP. Studying CD-DJ for TCP is our immediate future
focus. Our efforts to collect TCP flow data for topologies
with more number of hops were fruitless since the high
RTTs involved caused very small amounts of data to be
sent. In summary, our evaluation of TCP is limited and
a different set of parameters may be required for them.

D. MPEG Experiments

We conducted simple experiments with the 2−V V and
3−O topologies as explained in Section IV. The purpose
of these experiments was to show that video streaming
which is more vulnerable to bursty losses produces
smaller MSE with independent paths than dependent
paths. Table III shows the results of four experiments
involving the 2 − V V and 3 − O topologies. The MSE
of the Y, U and V frames are shown in the table.
The most relevant of the three MSEs is the MSE of
the Y (luminance) frames. The rest are shown only for
completeness sake. Since one of the lossy links has more
losses, the number of drops of the independent set of
paths is roughly the same for two servers of the same
experiment unlike the total losses experienced by the
dependent set of paths. The MSE values of the two pairs
of paths also show the same behavior. The dependent
paths produced better MPEG files when their lossy link
was better than the other. However, the results illustrate
that independent paths are better not because they will
lead to better quality but because the likelihood of a bad
quality MPEG is much less if they are used. In the case
of all of our MPEG experiments, CD-DJ estimated µ



of the dependent paths to be 1 and independent paths
to be 0. These experiments therefore prove that CD-
DJ can improve the performance of media streaming
applications. As we mentioned earlier in Section II,
previous solutions cannot be applied since the MPEG
application does not use a Y or Inverted-Y topology.

VI. DISCUSSION

We now discuss miscellaneous issues relevant to the
CD-DJ technique.

The following are properties of our technique that
make it suitable for use in a distributed network moni-
toring infrastructure:

• Asynchrony - The CD-DJ technique does not re-
quire the two senders to be synchronized.

• Easy Trace Collection - Our technique uses infor-
mation about the sending times (and jitter values)
of packet drops only which requires simple mea-
surements at the end hosts.

• Online Computation - Our technique is sufficiently
lightweight for it to be implemented online. For
the 10 minute experiments with a few thousand
drops that we observed, our technique completed
execution in much less than a second on a PIII
machine.

As we mentioned in previous sections, we do not know
of an easy way to verify our technique. We resorted to an
overlay-based approach because evaluation at the IP level
was next to impossible. Even with the overlay approach,
the range [µmin, µmax] is too large in some cases. It is
an open question if we can do better given the same
infrastructure.

In designing the CD-DJ technique, we assumed that
the routers used droptail queues. Our scheme is likely
to fail if routers begin to use RED as the queueing
discipline in which case long-term metrics such as drop
rate, throughput may have to be correlated. We men-
tioned the case of four sites that consistently gave bad
results. We would like to determine the cause behind
this. A strong possibility is the use of RED at some
router on the route to these hosts. On a related note, an
interesting application of our scheme would be to test
the deployment of RED on a path.i

VII. CONCLUSIONS

Media streaming and other Internet applications can
use independent paths i.e., paths that do not share a Point
of Congestion to increase their tolerance to bursty losses.
Existing solutions to the problem of detecting shared
PoCs cannot be used since the applications do not meet

the assumption of Y and Inverted-Y topologies made
by these solutions. In this paper, we proposed CD-DJ a
technique to estimate the amount of shared congestion
between two paths in the Internet. CD-DJ can be used
with the topologies of applications such as multipath
media streaming and possess many novel features. These
include the estimated of shared congestion instead of a
“yes/no” output, the determination of synclag by max-
imizing the cross-correlation coefficient. We performed
extensive evaluations, which have not been done earlier,
using PlanetLab. Our results showed that, with UDP
probes, CD-DJ provides an estimate that is within at least
a fraction 0.8 of the actual value of shared congestion.
Evaluating CD-DJ for TCP probe flows is not easy.
Our results have been mixed. The results presented in
this paper show that CD-DJ would provide estimates
that are more than half the actual amount of shared
congestion. Our immediate future work is to analyze CD-
DJ with TCP flows more thoroughly and to build more
applications that can use CD-DJ.

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Mor-
ris, “Resilient overlay networks,” in Proceedings of ACM
SOSP’01, 2001.

[2] T. Nguyen and A. Zakhor, “Distributed video streaming with
forward error correction,” in Packet Video Workshop, Pittsburgh
PA, USA, 2002.

[3] J. Apostolopoulos, T. Wong, W. tian Tan, and S. Wee, “On
multiple description streaming with content delivery networks,”
in Proceedings of IEEE INFOCOM’02, July 2002.

[4] Y. J. Liang, E. G. Steinbach, and B. Girod, “Real-time voice
communication over the internet using packet path diversity,”
in Proceedings of ACM Multimedia, Ottawa, Canada, 2001, pp.
431–440.

[5] H. Balakrishnan, H. Rahul, and S. Seshan, “An integrated
congestion management architecture for internet hosts,” in Proc.
of ACM SIGCOMM, September 1999.

[6] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang, “Enabling
conferencing applications on the internet using an overlay
multicast architecture,” in Proc. of ACM SIGCOMM, August
2001.

[7] D. Rubenstein, J. F. Kurose, and D. F. Towsley, “Detecting
shared congestion of flows via end-to-end measurement,” in
Proceedings of ACM SIGMETRICS’00, June 2000.

[8] D. Katabi and C. Blake, “Inferring congestion sharing and path
characteristics for packet interarrival times,” MIT-LCSTR-828,
MIT LCS, Tech. Rep., December 2001.

[9] K. Harfoush, A. Bestavros, and J. Byers, “Robust identification
of shared losses using end-to-end unicast probes,” in Proceeding
of IEEE ICNP’00, Osaka, Japan, October 2000.

[10] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Net-
working, vol. 1, no. 4, pp. 397–413, 1993.

[11] PlanetLab, http://www.planet-lab.org.
[12] W. Jiang and H. Schulzrinne, “Modeling of packet loss and

delay and their effect on real-time multimedia service quality,”
in Proceedings of NOSSDAV, 2000.



TABLE III

RESULTS OF MPEG EXPERIMENTS

Topology Server Losses on Losses on MSE of Dependent MSE of Independent
Number Dependent Paths Independent Paths Paths (Y,U,V) Paths (Y,U,V)

2 − V V 1 1964 3892 2122,328,160 2558,1036,506
2 − V V 2 5833 3893 4532,2303,964 2422,995,474
2 − V V 1 362 1249 377,10,13 1414,39,40
2 − V V 2 2104 1230 2078,70,83 1343,34,35
3 − O 1 111 50 85,7,1 39,3,1
3 − O 2 0 55 0,0,0 39,4,1
3 − O 1 160 78 20,1,1 11,0,0
3 − O 2 0 83 0,0,0 10,0,0

[13] H. Sanneck, G. Carle, and R. Koodli, “A framework model for
packet loss metrics based on loss runlengths,” in Proceedings
of SPIE/ACM SIGMM Multimedia Computing and Networking
Conference, January 2000.

[14] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the
constancy of internet path properties,” in Proceedings of ACM
SIGCOMM Internet Measurement Workshop, November 2001.

[15] M. Yajnik, S. B. Moon, J. F. Kurose, and D. F. Towsley,
“Measurement and modeling of the temporal dependence in
packet loss,” in Proceedings of IEEE INFOCOM’99, 1999, pp.
345–352.

[16] V. N. Padmanabhan, L. Qiu, and H. Wang, “Server-based
inference of internet performance,” in IEEE INFOCOM’03, San
Francisco, CA, USA, April 2003, (to appear).

[17] O. Younis and S. Fahmy, “On efficient on-line grouping of flows
with shared bottlenecks at loaded servers,” in Proceeding of
IEEE ICNP’02, Paris, France, November 2002.

[18] M. Beck, T. Moore, and J. S. Plank, “An end-to-end approach
to globally scalable network storage,” in Proceedings of ACM
SIGCOMM’02, Pittsburgh, PA, 2002.

[19] Kazaa, http://www.kaaza.com, 2002.
[20] tcpdump, http://www.tcpdump.org.
[21] Sprint ATL IP Monitoring Project, http://ipmon.sprint.com.
[22] Blanked for Anonymity.
[23] D. Hoffman, G. Fernando, V. Goyal, and M. Civanlar, “Rfc

2250: Rtp payload format for mpeg1/mpeg2 video.”
[24] Fourcc, http://www.fourcc.org.


