
Towards a More Functional and Secure Network Infrastructure

Daniel Adkins Karthik Lakshminarayanan Adrian Perrig Ion Stoica
UC Berkeley UC Berkeley CMU UC Berkeley

Report No. UCB/CSD-03-1242

Computer Science Division (EECS)
University of California
Berkeley, California 94720

This research was supported by the NSF under Cooperative

Agreement No. ANI-0225660, ITR Grant No. ANI-0085879, and

Career Award No. ANI-0133811.

Towards a More Functional and Secure Network Infrastructure

Daniel Adkins Karthik Lakshminarayanan Adrian Perrig Ion Stoica
UC Berkeley UC Berkeley CMU UC Berkeley

Abstract

We propose an overlay network infrastructure that provides
better protection against DoS attacks as well as more func-
tionality than today’s Internet. Our solution is based on three
simple principles: (i) enabling end-hosts to communicate
without revealing their IP address, (ii) giving end-hosts con-
trol to defend against Denial-of-Service (DoS) attacks at the
overlay level, and (iii) making sure that the added function-
ality does not introduce vulnerabilities not present in the In-
ternet. Our design is based on the Internet Indirection Infras-
tructure (

���
).

1 Introduction

As the Internet evolves into a global communication infras-
tructure that encompasses our society, economy, and govern-
ment, two of its limitations become increasingly apparent:
the difficulty in deploying new services such as multicast
and anycast, and the lack of security. While a plethora of
solutions have been proposed to address the former limita-
tion, the latter has received far less attention. For example, in
today’s Internet, an end-host can do little to defend against a
flooding attack. As described in [15], a packet flood can eas-
ily isolate a server from the network for several hours. Worse
yet, many of the solutions that aim to add functionality in-
troduce security problems of their own, thus increasing the
vulnerability of the end-hosts as well as that of the Internet
infrastructure itself. For instance, supporting multicast can
give an attacker more efficient ways to mount a DoS attack.

In general, there is a trade-off between adding more func-
tionality1 and achieving better security. Consider a set of
primitives required to implement some functionality. As the
functionality of a system increases, we usually need more
primitives to implement them. The probability that none of
the primitives has a security flaw decreases (security is often
an all-or-nothing game, as a single flaw can render the en-
tire system vulnerable). Thus, simplicity and less function-
ality (fewer primitives) usually contribute to increased secu-
rity [29]. Contrary to this popular belief, in this paper, we
show that one can build a communication infrastructure that
provides both more functionality and improved security —
namely protection against DoS attacks — than the Internet.

Traditionally, the main research thrust in preventing dis-
tributed DoS attacks has been on IP-level packet filtering,

1A system that provides more functionality is a system that al-
lows users to execute a larger variety of tasks.

IP traceback and pushback techniques (as we review in Sec-
tion 9). However, these approaches do not address the funda-
mental inability of an end-host2 in today’s Internet to stop a
traffic flow directed towards it. Typical end-hosts in the Inter-
net would benefit from having more flexible and fine-grained
control over the traffic they receive.

The idea of using overlay networks to provide better defense
against DoS attacks was first introduced in SOS [20], and
later explored in Mayday [1] in more detail. However, these
solutions assume that the set of clients accessing each of
these servers is known in advance, and that client authoriza-
tion is done out-of-band. They also assume that the IP in-
frastructure provides a basic filtering service near the target
hosts. In this paper, we provide a solution that not only re-
moves these limitations, but also provides more functionality
than the Internet.

Our solution is based on an overlay network infrastructure
built on top of IP. To achieve better protection against DoS
attacks than the Internet, we follow three simple design prin-
ciples. First, the overlay infrastructure should enable end-
hosts to communicate without revealing their IP addresses.
This would leave an attacker with no direct way of attacking
a host (that communicates exclusively through the overlay)
via IP. Second, the infrastructure should give end-hosts the
ability to defend against attacks, possibly by stopping the at-
tack in the infrastructure. This would make the infrastructure
strictly better than the Internet, where an end-host can do lit-
tle against a flooding attack directed at its IP address. Third,
one should make sure that the added functionality doesn’t
open security holes not present in the Internet, such as al-
lowing the attacker to use the infrastructure to mount new
attacks against end-hosts.

To demonstrate our point, we re-design the Internet Indi-
rection Infrastructure (

���
) [31], an indirection-based overlay

network infrastructure, with the above principles as our ba-
sis. There are two reasons for choosing

���
. First,

���
provides

more functionality than IP. In addition to unicast,
���

provides
direct support for anycast, multicast, mobility and service
composition. Second, as we shall see in Section 5, the flexi-
bility of

���
helps in realizing the first two of the principles we

have mentioned above. Though
���

provides all these advan-
tages,

���
introduces some vulnerabilities not present in the

Internet. Following our third design principle, we re-design

2In this paper, we loosely use the term end-host to refer to any
site connected to the Internet.

1

���
(we call the new system Secure-

���
) to eliminate these vul-

nerabilities without sacrificing functionality.

The paper is organized as follows. Section 2 enumerates our
design principles for building a secure overlay. Section 3
gives a brief overview of

���
, and Section 4 presents our as-

sumptions. We describe the details of our solution in Sec-
tion 5, and consider its impact on the original

���
functional-

ity and performance in Section 6. Section 7 presents a evalu-
ation of the overhead our solutions incur. Finally, we present
related work and conclusions.

2 Design Principles for a Secure Overlay

In this section, we present three simple design principles to
build an overlay communication infrastructure that provides
better protection against flooding attacks than the Internet.
While we realize that there could be other possible ways of
designing secure systems on top of an IP network, we be-
lieve that these design principles are general enough to be
applicable in designing other secure overlay systems.

Hide IP address. The overlay infrastructure should enable
end-hosts to communicate without revealing their IP ad-
dresses. This would leave an attacker with no direct way of
learning the IP address of an end-host that communicates ex-
clusively through the overlay. If this principle is violated, the
overlay network cannot provide better protection than the un-
derlying IP network, as the attacker could simply use the IP
address of the victim to attack it.

Give end-hosts control to defend against attacks. Hiding
end-host IP addresses would amount to nothing if the in-
frastructure itself does not provide better protection against
flooding attacks than the underlying IP network. We believe
that the key to achieving this is to give end-hosts the ability
to stop an attack directed at them or route around parts of the
infrastructure that are under attack. Since end-hosts are, in
general, in the best position to detect if they are under attack,
they would greatly benefit from the ability to stop the attack
before the traffic arrives at their ingress link, i.e. the link that
connects them to the Internet. Indeed, if the packets of the
attack do arrive at the ingress link, there is nothing that the
victim can do against the attack.

Note that this principle argues that the popular belief that
more functionality hurts security is not necessarily the case.
In particular, careful choice of network primitives which en-
able end-hosts to have more control on data forwarding and
routing can improve security. Of course, we need to make
sure that solving a security problem will not create new ones,
and this is precisely what the last principle addresses.

Avoid new vulnerabilities. The added functionality should
not introduce new security vulnerabilities not present in to-
day’s Internet. A network infrastructure that provides better
protection against flooding attacks but creates new security
problems would not be the most desirable outcome of our re-

Sender
(S)

Receiver
(R)id R

send(id,data) send(R, data)

S

R1

send(id,data)

R2

R4

R3

S

R1send(p|a,data)

R2

R3

send(R1,data)
(a) (b)

(c) (d)

S
R

idT T id R

Transcoder (T)

send(R, data)send((id
T ,id), data)

id’ R1

id’ R2
id id’

id R3

id R4

R1

R2
R3

p|s1

p|s2

p|s3

Figure 1: Basic communication primitives in
���

: (a) unicast,
(b) multicast, (c) anycast, and (d) service composition.

search. While this principle might seem obvious, we feel that
it is important to emphasize it, as too often security solutions
fail to study the potential side effects carefully.

We do not expect one to formally prove that the proposed
system does not introduce new security problems. This
would require a formal description of the behavior and the
properties of the system, which is very hard to do in prac-
tice (e.g., how would one formally describe the behavior of
the Internet?). Instead, we expect one to study this issue in
reasonable depth and provide qualitative arguments support-
ing the fact that new security vulnerabilities are not intro-
duced. For example, Mayday [1] is one of the recent works
which provides a discussion of attacks and defenses on the
proposed architecture in reasonable depth.

3 Overview: ���
To develop a solution that can provide more functionality and
better protection against flooding attacks than today’s Inter-
net, we start with the Internet Indirection Infrastructure (

���
).

As described in [31],
���

already provides more functionality
than the Internet. In addition, as we shall see in Section 5,
the flexibility of

���
provides a good starting point for realiz-

ing the first two principles discussed in Section 2.

At its roots,
���

provides indirection, that is, it decouples the
act of sending a packet from the act of receiving it [31].
There are two basic operations in

���
: sources send packets to

a logical identifier and receivers express interest in packets
by inserting a trigger into the network (Figure 1(a)). Pack-
ets are of the form �����	�
�������� and triggers are of the form
�������
��������� , where ������� is either an identifier or an IP ad-
dress. Given a packet �����	�
�������� , ���

will search for a trig-
ger �������
��������� and forward ������ to ������� . Receivers refresh
the triggers that they insert as long as they desire to receive
packets sent to the identifier that the trigger corresponds to
(soft-state approach). In addition,

���
supports an operation to

remove triggers.

2

Identifiers in packets are matched with those in triggers us-
ing longest prefix matching. To reduce the probability of ac-
cidental collision, two IDs match only if they share a pre-
fix with a length of at least 128 bits.

���
is implemented

as an overlay network of nodes that store triggers and for-
ward packets. Identifiers are mapped to

���
nodes using a

distributed lookup service such as Chord [32]. A trigger is
stored at the node that is responsible for its identifier in ac-
cordance with the Chord lookup protocol. Similarly, packets
are routed to the appropriate node by Chord. The mapping
procedure ensures that all IDs which share the same 128-bit
prefix are mapped on the same node; thus, the longest prefix
matching operation is performed locally.
���

provides direct support for a variety of communication ab-
stractions, including mobility, multicast, anycast and service
composition. A mobile host that changes its address from �
to ��� can preserve the end-to-end connectivity by updating
its trigger from ��������� � to �����	��� � � .
Creating a multicast group is equivalent to having all mem-
bers of the group register triggers with the same identifier.
There is no difference between unicast and multicast in

���
,

and an application can switch between the two on the fly.
Figure 1(b) shows a two level multicast hierarchy. Concep-
tually, triggers can be thought of as pointers that point either
to receivers or to other triggers.

All hosts in an anycast group maintain triggers that have
identical 128-bit prefixes (Figure 1(c)). Packets are delivered
to the group member that has the trigger with the longest
matching identifier. This scheme can be used to implement
applications such as server selection.

Finally,
���

can provide service composition, that is, allow ei-
ther the sender or the receiver to forward packets through
intermediate points in the network. One way to achieve this
is to replace the packet ID with a stack of IDs. Forwarding
such a packet is similar to source routing in IP. Figure 1(d)
shows how a sender � can use a stack of IDs, � ���
	 � ����� , to
forward the packet through a transcoder . A receiver can
control packet forwarding by replacing the second field of its
trigger with a stack that describes the forwarding path [31].

4 Assumptions

In this section, we present our assumptions about the under-
lying system, how the end-hosts are supposed to operate and
the threat model of attackers.

Underlying Infrastructure:

1.
���

depends on a peer-to-peer lookup service such as
Chord. We assume that the lookup service is itself ro-
bust and reliable, and that attackers cannot compromise
the lookup service. For related work on security of peer-
to-peer lookup services, see [6, 30].

2. There is no additional functionality (such as packet fil-
tering) that the IP network provides.

3.
���

nodes are infrastructure resources, and hence have
significantly more bandwidth than “typical” end-hosts
in the Internet.

4. End-hosts have a secure connection providing confiden-
tiality and authenticity to the first

���
node, e.g., a con-

nection secured through IPSec [18, 19].

Operation of end-hosts:

1. End-hosts (servers) that expect connections from arbi-
trary end-hosts (clients) must have triggers whose iden-
tifiers are well known. These triggers are called public
triggers. Once a client contacts a server through its pub-
lic trigger, they can exchange a pair of identifiers which
they use for the remainder of the communication. Trig-
gers corresponding to these identifiers are referred to as
private triggers 3 Note that the use of public triggers as
initial rendezvous points gives end-hosts complete free-
dom in picking the IDs of their private triggers.

2. End-hosts do not reveal their IP addresses, and for all
practical proposes, the address of an end-host is diffi-
cult to guess. Note that even if the attacker learns the IP
address of a target end-host by other means, as long as
the target can obtain a different IP address (using some
mechanism offered by the ISP, such as DHCP), it can
defend itself against a potential DoS attack.

���
allows

the target end-host to maintain the ongoing connections
as long as it updates its triggers to point to its new ad-
dress.

3. End-hosts do not reveal their private IDs, and it is infea-
sible for an attacker to guess a private ID, since IDs are
256 bits long.

Attacker threat model:

1. Since we assume a secure connection from a client
to the first

���
node, an attacker cannot eavesdrop on

any traffic between end-hosts and
���

nodes. Also, since
���

nodes are part of an infrastructure, we assume that
eavesdropping on an

���
node at the IP level is as hard as

eavesdropping on an IP router. Note that this assump-
tion does not preclude eavesdropping at the

���
level.

2. An attacker cannot compromise
���

nodes. The security
of a particular

���
node is a software problem which we

do not address in this paper.

5 Solution

The goal of this paper is to demonstrate that it is possible to
build an overlay infrastructure that provides both more func-
tionality and enhanced robustness against DoS attacks than
the Internet.

To achieve this goal, we re-design
���

which already provides
significantly more functionality and flexibility than the Inter-
net (see Section 3). Next, we discuss how

���
can be used to

3End-hosts that do not need to be contacted by arbitrary end-
hosts don’t need to maintain public trigger.

3

Attacker
(A)

Victim
(V)send(x’,..)

x V

x’ A

send(A,..)
Sender

(S)

Receiver (R)

send(x, data)

y R

x y

(a) (b)

Figure 2: (a) An attacker learning the IP address of the
���

node that stores the victim’s public trigger ��� � � � (� and � �
have the same prefix). (b) Possible solution: every

���
node

responsible for public IDs won’t allow triggers pointing to
end-hosts and won’t allow end-hosts to cache its IP address.

realize the first two design principles presented in Section 2,
and then present a set of techniques to realize the last princi-
ple. For the sake of clarity, we refer to the modified, secure
form of

���
as Secure-

���
.

5.1 Hide IP Addresses

If an overlay communication infrastructure is to provide bet-
ter protection against flooding attacks than the underlying
Internet, the infrastructure should enable end-hosts to com-
municate without revealing their IP addresses. Otherwise, an
attacker can learn a victim’s IP address and use it to mount a
flooding attack via IP (recall that we assume that there is
no filtering done at the IP level). Decoupling the address
of an end-host � from its identity by a level of indirection
would then enable other end-hosts to contact � . This is ex-
actly what

���
provides, that is, it allows end-hosts to com-

municate exclusively through IDs rather than IP addresses
(see Figure 1). Obviously, we assume that the node does not
reveal its IP address, for instance using DNS.

However, while there is no direct way for an attacker to learn
the IP address of a victim in Secure-

���
, the attacker can easily

learn the IP address of the node that stores the victim’s pub-
lic trigger. As illustrated in Figure 2(a), an attacker � can
insert a trigger ��� � ��� � pointing to itself and send a packet
to that trigger. As a result, the packet will be sent back to
the attacker via IP thus revealing the IP address of the node
storing ��� � ��� � . By choosing � � to have the same prefix as
the victim’s public 4 ID � , the attacker can easily learn the IP
address of that node. Then, the attacker can use IP flooding
to attack the

���
node storing the victim’s ID. This can ren-

der the victim unreachable for new clients, as the new clients
would not be able to contact the victim via its public ID.

Our solution to this problem is to make sure that nodes stor-
ing public triggers will never communicate with end-hosts
via IP. Such a node will store only triggers of the form ��� ��� �
where both � and � are IDs. Thus, an end-host � that ad-
vertises a public ID � needs to insert a pair of triggers ��� ��� �
and ��� ��� � , where � is a private ID (see Figure 2(b)). This

4In 	�
 , triggers with the same prefix are stored at the same 	�

node [31].

way the end-host will receive the packets sent to � from the
node storing ID � instead of the node storing � . To imple-
ment this solution we can dedicate a region of the ID space
to public IDs, and then make sure that nodes that store IDs
in this region will not allow triggers pointing to end-hosts.

With the aforementioned scheme, the attacker can still learn
the IP address of an

���
node storing private triggers. How-

ever, this is not a serious concern since private triggers are
secret, and therefore there is no direct way for the attacker
to learn where the victim’s private triggers are located. To
summarize, the attacker has no effective way of mounting an
IP-level flooding attack against a victim: it cannot learn the
IP address of the victim or of the node storing the victim’s
public trigger, and it has no effective means of identifying the
node storing the victim’s private trigger. However, attacking
at the

���
level is still possible, which is what we address next.

5.2 Give End-hosts Control Against Attacks

In the previous section, we have illustrated mechanisms
which preclude an attacker from flooding a victim at the IP
level. Of course, all of these would amount to nothing if the
overlay infrastructure cannot provide better mechanisms to
defend against the attack.

We believe that the key to providing a better defense for the
end-hosts against flooding attacks is by giving end-hosts the
ability to defend themselves against the attack. This can be
achieved by empowering end-hosts with more control so that
they can stop any flow addressed to them. Since end-hosts are
usually in a better position to detect flooding attacks than the
infrastructure is, we believe that they should also have the
capability to defend themselves. This is because end-hosts
have more information (than the infrastructure does) about
the content and semantics of the traffic they expect to receive.
For example, if CNN receives hundred times the usual traffic
in the absence of any important event or news, then CNN
might classify it as an attack.

In the remainder of this section, we illustrate how end-hosts
can defend against flooding attacks using the flexibility of
���

. In particular, we show how end-hosts can (i) stop attacks
on private triggers, (ii) dilute or slow down attacks on public
triggers, (iii) evade attacks on

���
servers, and (iv) provide

multicast access control.

5.2.1 Stop the Attack

An end-host under attack can stop the traffic received
through one of its triggers by simply removing that trigger.
Since the trigger is stored at an

���
node in the infrastructure,

removing the trigger will completely eliminate the traffic re-
ceived by the end-host through that trigger.

In contrast, in today’s Internet, a victim can do nothing
against a flooding attack directed at its IP address. 5 While

5In some cases, customers can call up their ISP, but this is usu-

4

(a) (b)

Victim
(V)

x4 V
x3 V

x2 V
x1 V

Attacker
(A)

Victim
(V)

x4 V
x3 V

Attacker
(A)

Figure 3: (a) Flooding attack via victim’s public triggers. (b)
Dilute the attack by dropping two of the four public triggers.

it is theoretically possible to engineer the network to detect
and defend against such an attack (e.g., by implementing IP
traceback [4, 11, 28] and pushback [16, 21]), there are a few
problems with this approach. First, more intelligence in the
network increases network complexity and makes it harder
to manage. Second, when a new type of attack emerges, it
will take some time to engineer the network to detect it, and
during this time end-hosts will remain vulnerable to the at-
tack.

We note that removing a trigger is particularly useful in the
case of private triggers, as this would stop the traffic from
the attacker without affecting legitimate traffic. Recall that in
���

, each receiver communicates with different senders using
different private triggers that are kept secret by the senders.
Hence, the attacker will not be aware of the private triggers
of other legitimate senders communicating with the receiver.

However, this technique would not work well for public trig-
gers. Recall that servers that want to be contacted by arbi-
trary clients need to maintain a public trigger in

���
. In this

case, an attacker can use the server’s public trigger to mount
an attack. Of course, the server can stop the attack by drop-
ping the public trigger, but this would prevent new clients
from connecting to the server. However, note that even if
the server becomes unreachable for new clients, the current
clients can still communicate with the server via their private
triggers. In contrast, in the Internet a flooding attack on the
server will disrupt ongoing connections as well.

In another example, removing the public trigger of a com-
promised server can avoid collateral damages. Consider a
web-server � run by Bank of America sharing an access link
with a machine � that is connected to its ATM network. �
is involved only in private communication with the ATMs,
whereas � expects clients to connect to it, and hence has a
public trigger. In the event of an attack on � , removing public
triggers of � would allow one to access the ATM as before,
at the cost of completely shutting down a less critical service.

5.2.2 Dilute the Attack

As discussed in the previous section, it might be impossible
for a server to stop the attack totally. As long as the server
has a public trigger, the attacker can abuse it.

ally a very time-consuming process.

We propose a simple solution to alleviate this problem. The
main idea is to give a server the ability to drop a fraction�

of the total traffic destined for its triggers. The hope is
that by doing so, a server under attack will also drop a frac-
tion

�
of the offending traffic. Of course, random dropping

on traffic destined for public triggers would also hurt legiti-
mate clients, since clients’ requests to connect through these
triggers will fail. However, because a client chooses a new
random trigger every time, it will succeed after ��� ����� � �
tries on an average. Thus, this approach allows a server to
degrade its service gracefully by trading between the extent
of offending traffic dropped and the time a legitimate client
takes to connect.

Implementing this technique is easy. A server maintains �
public triggers, and each client is expected to randomly
choose one of these triggers when it attempts to connect.
In the face of a flooding attack, the server gradually drops
the public triggers that receive the most traffic. The rea-
son behind this strategy is that legitimate clients are ex-
pected to generate uniform load (as they select public trig-
gers randomly), and thus the triggers receiving a dispropor-
tionate amount of traffic are those that are most likely to
carry the attacker’s traffic. By removing the highest loaded	 ��
�� � public triggers, the server will shed at least a frac-
tion

�� 	 ��� of the attacker’s traffic. It is worth noting
that removing public triggers will not affect clients that are
already communicating with the server through their private
triggers.

We make two other points. First, to implement a similar ser-
vice at the IP layer, one would need to protect the traffic of
ongoing connections from other traffic (this includes traffic
to establish new connections, e.g., SYN packets, as well as
other traffic arriving at the end-host). This would require the
router (of the service provider) before the ingress link to im-
plement packet classification and bandwidth management,
and to allow end-hosts to push filters on a per source basis.
Rate-limiting SYNs as it is done today by some ISPs is not
sufficient as an attacker can still affect the ongoing connec-
tions by sending non-SYN packets.

Second, an intelligent attacker can learn which public trig-
gers are alive—by listening for replies corresponding to each
trigger it contacts—and then can redirect all its traffic to
those triggers. To get around this problem, the server can
rapidly change the subset of 	 active public triggers (out of
the original set of � triggers), using a memoryless process.
If the average lifetime of a trigger is on the same order of
magnitude as the time it takes the attacker/client to receive
a reply from server, the attacker won’t be able to infer from
the reply whether the corresponding trigger is still alive.6 To
reduce the frequency with which the server would need to

6Let � be the time after which a client receives a reply. If the
mean trigger lifetime is ������� , the attacker cannot infer whether the
trigger is still alive or not upon receiving the reply.

5

Server (S)Client (C) t S

x A

DoS-Filter (A)

1 C id

3

2

Figure 4: Slowing down a DoS attack on a public trigger.

change its public triggers, one possibility would be to de-
lay each reply (e.g., by a few seconds). Finally, note that
since a legitimate client selects a public trigger randomly,
this scheme will not affect the number of tries a client has to
perform to connect to the server.

5.2.3 Slow Down the Attack

A solution to slow down the attack on a public trigger is to
use a powerful third-party server � (called DoS-filter server)
that shields the server � from the attack. In this solution, we
assume that server � is much more powerful than � and it
can sustain a DoS attack that will otherwise cripple � .

The main idea behind this scheme is to give a cryptographic
puzzle to the client that has to be solved by the client in order
to contact the server � . This scheme is illustrated in Figure 4.
Server � stores a private trigger ��� � � � where � is known only
by the DoS-filter server � . In turn, � inserts a public trigger
��� ��� � and advertises � as being the public ID of server � .
Related work about the use of crypto puzzles is mentioned
in Section 9.

When a client � wants to contact � , � sends a message to
ID � . This message is in turn delivered to � (step (1) in Fig-
ure 4). Upon receiving this message, � sends a cryptographic
puzzle back to client � via the private trigger � ��� ��� � that
was inserted by the client � (step (2) in Figure 4). Client
� then solves the puzzle and sends the answer back to ID � .
Upon receiving this message, � verifies that � has solved the
puzzle and forwards the packet to ID � (step (2) in Figure 4).
Finally, the packet is delivered to server � which allocates a
private trigger for client � as before.

To avoid replay attacks, � will respond to each message with
a unique puzzle. Once it sends the puzzle, � stores it and
waits for a reply. On receiving the reply (i.e., the solution
to the puzzle), � removes the puzzle. Of course, if � does
not receive a reply within a specific period of time, � will
remove the puzzle from its list.

We also note that these schemes would be adopted by servers
only when under attack. Hence, under normal operation,
clients will not have the burden of either solving crypto puz-
zles or trying multiple times to reach a server.

idG

id1
idR3

S1

id1

R1

R2

R3

ids2 idG

ids1
idG

S2

Receivers

Senders

id1
idR2

id1
idR1

idR1 R1

idR2 R2

idR3 R3

Figure 5: Multicast Access Control

5.2.4 Evade the attack

If the attack is directed towards a particular
���

node, then
end-hosts can route “around” the attacked

���
node by choos-

ing a different trigger. For comparison, if a router is attacked
in the Internet, routing around the attack is not under the con-
trol of end-hosts.

5.2.5 Multicast Access Control

One of the main security concerns of IP multicast is access
control. This is because there is only one IP multicast ad-
dress which is used both by senders to send traffic to, and by
receivers to subscribe to. This implies that any receiver can
potentially send multicast traffic to the entire group, which is
clearly not desirable.

Secure-
���

can avoid this problem by having different IDs for
senders and receivers of the multicast group. In practice, the
management of the multicast group, i.e. the job of assigning
IDs for subscribing to the group and sending to the group,
can be done by a private entity or a third party.

For example, in Figure 5, there are two senders and three re-
ceivers. The multicast service provider would construct the
tree of triggers which lie inside the circle shown in the figure.
It would then provide

�������
and

�����	�
respectively to senders

� � and � � , and
����
�� � ����
� and

����
�
to receivers � � ��� � and

� � . Receiver ��� would be responsible for refreshing the trig-
ger � � ��
 � ����� � . The receivers are not aware of the tree topol-
ogy, but they would still receive the contents from � � and
� � . Furthermore, only sender � � (and of course, the multicast
service provider) is aware of the private ID

��� � � — thus,
��� � �

is the secret key for access control. This decoupling allows
one to perform fine-grained access control by not publishing
the sender’s triggers. Clearly, sender � � can violate the mech-
anism by sending

����� � to a larger set of senders. But, this is
similar to someone letting out their password in public, and
is outside the scope of our solution. Moreover, violation of
the sending rate to any of the IDs

� ��� � of the multicast group
is similar to a flooding attack on private triggers and can be
dealt with by removing the trigger � ����� ����� � . The multicast
service provider, � , can easily detect flooding by inserting
the triggers � ����� ����� � for each sender ��� , and monitoring the
sending rates of each of the senders.

6

Sender
Receiver

(R)
id R

send(id,data)
send(R, data)

Attacker

send(id,data)

Victim
(V)

(a) (b)

(c) (d)

Attacker (A)

id E id4
id1

id3

id3

id3

V
Attacker id2 id4Attacker id2id1 id3id2

id3

id2 id3

id2

id2

id2

id1 id3

id1

id4 id3

id2

Figure 6: Security problems in
���

: (a) eavesdropping; (b)
loop, (c) confluence, and (d) dead-end.

Note that this is a very efficient non-cryptographic solution
to the problem of access control for multicast groups. So far,
the majority of research has considered cryptographic solu-
tions [33, 34] to address this problem. Since we assume that
eavesdropping within the Secure-

���
infrastructure is hard,

our non-cryptographic solution to access control also allows
simple member addition and deletion, and achieves forward
and backward secrecy (i.e., a joining member cannot receive
content sent before it joined, a leaving member cannot re-
ceive content sent after it was removed).

5.3 Avoid New Vulnerabilities

Thus far, we have shown that, with minimal changes,
���

can
realize the first two principles presented in Section 2. We
now systematically analyze the potential ways by which an
attacker can abuse the flexibility of

���
to mount an attack on

the end-hosts or on the infrastructure itself. We do this by
exhaustively enumerating all the possible ways of invoking
the “primitives” offered by

���
. In the process, as suggested

by the last principle, we provide qualitative arguments sup-
porting the fact we introduce no new vulnerabilities.

At the
���

level, end-hosts can perform only one of the two
operations: (i) insert/remove a trigger (ii) send a data packet
to an ID. Apart from removal of valid triggers, malicious
operations on the control path can be performed only using
trigger insertions, and this can cause new attacks. Sending
a data packet to an ID can be used only for packet floods,
possibly on topologies constructed by using the flexibility of
���

.

We shall first see what an attacker can do by inserting arbi-
trary triggers. Triggers in

���
can point either to end-hosts, or

to other IDs.

5.3.1 Attacks using triggers pointing to end-hosts

Assume a legitimate end-host � maintains trigger � � � ��� � in
���

. The only way an attacker can directly attack end-host �
is by abusing either

���
or � .

1. Abusing
���

: The only possibility for an attacker � to abuse
� ’s

���
is to insert � ��� ��� � , where � is an address different

from � . In such a scenario, every packet sent to � (through
���

) is transparently forwarded to � as well.

Eavesdropping. If the attacker sets � to its own address
� , the attacker will eavesdrop on all the traffic to � (see
Figure 6(a)). Thus, eavesdropping is much easier in

���
than

in the Internet, where the eavesdropper has to be on the same
LAN or on the path to the victim.

Impersonation. A minor variant of the above attack involves
an attacker � making end-host � drop its public trigger
��� ��� � by flooding it (as in Section 5.2.2). Then, if � in-
serts ��� ��� � , � can not only eavesdrop on � ’s traffic but also
actively respond to it, thus impersonating � .

The attacker’s ability to eavesdrop is inherent in
���

’s ar-
chitecture. Packets are multicast when several triggers have
the same ID, and furthermore this is transparent to both the
senders and the receivers. Before moving ahead, we ask a
basic question: Would disallowing multiple triggers with the
same ID solve our problem? The answer is “no”. Though
this solves the problem of eavesdropping, it does not solve
the problem of impersonation. Actually, it may worsen the
situation as � will not be able to insert its own trigger.

2. Abusing � : The attacker can abuse � by inserting a trig-
ger � ��� � ��� � , and sign-up the victim � for high-bandwidth
streams. Note that this attack is not possible under our as-
sumptions, since this would require the attacker to know
the IP address of � . However, we note that the technique
presented Section 5.3.6, covers even the case of an attacker
knowing the IP address of � .

5.3.2 Attacks using triggers pointing to IDs

With triggers of the form � ��� � ��� � � , an attacker can do two
things: (i) construct arbitrary topologies, and (ii) arbitrarily
interconnect existing topologies.

1. Construct arbitrary topologies. The attacker may con-
struct topologies to multiply the attack traffic and direct it
at one end-host using a trigger of the form � ��� ��� � . Below
we give three examples of such undesirable topologies.

Loops. An attacker may form a loop by inserting
triggers � ����� � ���	� � � � ���	� � ����� � ������� �
� �����	��
 ��� � ��� � � � � ��� � � ����� �
(see Figure 6(b)). Packets sent to any of the IDs of the loop
would indefinitely cycle around and consume infrastructure
resources.

Confluence. An attacker can construct a confluence as
shown in Figure 6(c)). In the event of a confluence formation,
packets are first replicated as they would be in a multicast
tree. Then, instead of being delivered to separate end-hosts,
all the replicated packets converge to eventually overwhelm
an end-host via its public trigger.

7

Dead-ends. An attacker can construct a chain of triggers
or a portion of a tree which does not ultimately point to a
valid end-host (see Figure 6(d)). A data packet sent on such
a topology would be routed through the chain of triggers only
to be dropped when it reaches the dead-end. Such a packet
will consume infrastructure resources without doing any use-
ful work.

2. Interconnecting existing topologies. By inserting arbitrary
triggers, an attacker can channel the traffic between different
applications (reflection). For instance, an attacker can sign-
up a victim to a high bandwidth traffic stream by inserting a
trigger � � � � � ��� � , where

���
is the public ID of the victim. In

another example, the attacker can cause BBC to receive all
the connection requests destined for CNN by simply insert-
ing a trigger � ��������� � ��������� � .
5.3.3 Attacks by sending data to arbitrary topologies

Node confluence. The flexibility that
���

offers in placing a
trigger (by choosing a prefix for the ID) can be used by an
attacker to store all the leaf triggers of a multicast tree at
the target

���
node. As a result, for every packet sent by the

attacker, the target
���

node will be bombarded with � dupli-
cates, where � represents the number of leaf triggers (i.e.,
receivers) of the multicast tree.

Of course, one of the simplest things an attacker can do to
attack the infrastructure is to build a larger random multicast
tree and blast packets into the infrastructure.

We now propose three techniques to address the above prob-
lems: trigger constraints, pushback, and trigger challenges.

5.3.4 Technique 1: Constrained Triggers

One observation while studying the attacks that can be
mounted on

���
is that most of the attacks are due to the

fact that end-hosts can insert triggers with arbitrary IDs. Pro-
actively eliminating the possibility these attacks by imposing
some constraints on the triggers is desirable. The challenge
then, is to define such constraints without sacrificing

���
func-

tionality.

We address this challenge by enforcing a constraint on the
structure of triggers, i.e., for a trigger ��� ��� � , the choice of �
constrains the choice of � or vice-versa. We divide the 256-
bit ID into three fields: a 64-bit prefix, a 128-bit key, and a
64-bit suffix (Figure 7). This preserves user’s flexibility to
choose the prefix (choice of trigger placement), and the suf-
fix (to enable anycast) while restricting the key using some
constraints. A Secure-

���
trigger with identifier � matches a

packet with identifier � iff: (a) the prefix and key of � exactly
match the prefix and key of � , and (b) there is no trigger that
has a longer prefix match with � than � .

We now explain the constraints on trigger structure and rules
on trigger insertion.

1. Trigger Constraints: Only triggers of the form ��� ��� � ,

prefix key suffix
64 128 64

must match

x y

y.key = hr(x)

x y

x.key = hl(y)

x y

x.key = hl(y.key)

end-host address

(a) (b)

(c) (d)

Figure 7: (a) Secure-
���

identifier. (b) � -constrained trigger
��� ��� � . (c)

�
-constrained trigger when � is an ID. (d)

�
-

constrained trigger when � contains an end-host address.

where either � �
	�� � ���� ��� � or � �
	�� � ���� ��� � 7,
are allowed in Secure-

���
. The reason we choose dif-

ferent hash functions
��

and
��

is to avoid cycles (see
Lemma 1).

��
and

��
are one-way cryptographic hash

functions mapping 256-bit strings to 128-bit strings.
��

and
 �

are publicly known functions, and hence any
���

node or host can check and enforce the constraints. If
� �
	�� � �� � ��� � , we say that trigger ��� ��� � is � ��� � -
constrained (or � -constrained); otherwise, we say that
it is

� � � � -constrained (or
�
-constrained). Intuitively, we

can see that these constraints will disallow construction
of arbitrary topologies in Secure-

���
.

2. End-host constraints: If a trigger ��� ��� � points to an
end-host we use the fields y.prefix and y.suffix to encode
the end-host address. Furthermore, if an

�
-constrained

trigger ��� ��� � points to an end-host, we use only y.key to
constrain x.key, i.e., instead of computing x.key as

�� ��� �
we compute it as

�� ��� �
	�� � � . As we shall see, ignoring
y.prefix and y.suffix when computing

 � ��� � allows us to
preserve support for anycast and mobility.

3. Constraints at the
���

nodes: Public
���

nodes allow
only

�
-constrained triggers. As we shall see, this con-

straint precludes eavesdropping and impersonation of
end-hosts. It also does not allow attackers to attack pub-
lic

���
nodes by leveraging multicast functionality. In ad-

dition, as discussed in Section 5.1, public
���

nodes do
not allow triggers pointing to end-hosts.

We use the following observations to argue that constrain-
ing triggers eliminate many of the problems we discussed
before. Secure one-way hash functions, such as MD5 [27],
provide strong collision resistance, which means that it is
computationally infeasible to find two distinct values � and
� � , such that

 ��� � �� ��� � � . Based on the birthday paradox,
finding a collision requires approximately � ��� operations.
Since � � � � ��� in our case, finding a collision would require
on the order of ����� � ! operations. More generally, assuming
that our cryptographic one-way hash function behaves as a
random mapping, finding a cycle requires on the order of" # � �$� operations [14]. Since � � � � �%� in our case, find-

7If it is clear from the context, we use notations &('*)�+-,/.10 and.2'3)546,/&70 instead of &�8 9�:;&<'3)5+-,/.10 and .�8 9�:=&>'3)546,/&70 .
8

ing a cycle would require on the order of ��� � � � operations.
While computing ��� � operations is not out of the reach with
current technology, this still requires a substantial effort —
consider that breaking a DES key only requires ��!%� opera-
tions, and breaking a

� �-� bit RSA key requires on the order
of �$!�� operations [9].

Next, we show how constrained triggers can be used to solve
three of the problems discussed in this section: eavesdrop-
ping, impersonation, and forming undesirable topologies.

To avoid eavesdropping and impersonation, an end-host �
inserts only public triggers that are

�
-constrained. For trigger

��� ��� � , the end-host uses the fields � � ���-� � � � and � � ��� � � � �
to store its address, and uses � � 	1� � to store a secret value that
is known only to � .

To eavesdrop the traffic destined to ID � , an attacker would
need to insert a trigger ��� ��� � � that points to itself. (i) If ��� ��� � �
is an � -constrained trigger, the insertion will fail because
the public Secure-

���
node storing ��� ��� � would not accept� -constrained triggers (Refer the last constraint). (ii) On the

other hand, if the attacker inserts an
�
-constrained trigger, the

attacker would need to find � �
	�� � . This is infeasible as it re-
duces to inverting

 �
, which is a one-way function.

Lemma 1. With constrained triggers, it is computationally
infeasible to construct any topology other than trees.

Proof. Let be a topology formed using constrained trig-
gers. Define �	� to be the undirected graph such that (i) ev-
ery ID in a trigger corresponds to a vertex in �
� (ii) � edge �
between two IDs � and � iff ��� ��� � or ��� ��� � is a trigger in .
Next, define �
� as the directed tree formed by assigning di-
rections to the edges of � � in the direction of the constraint
that the trigger corresponding to that edge satisfies. For ex-
ample. a trigger ��� ��� � �� ��� ��� in would have an arrow
from � to � in �	� . Note that � � is the underlying graph of
the directed graph �
� .
The proof is by contradiction. Let be a topology of triggers
that is not a tree. From above definitions, � � has a cycle, i.e.
the underlying graph of � � has a cycle. Two cases arise.

Case (i) �	� has at least one vertex with in-degree 2. This
implies that � � ��� , such that

 � ��� � � � ��� � , for
 ��� ��� � � � , such that ���� � or

 ���� �
. For this to be infeasible,

we require
 ���� �

, otherwise for � � � , this would yield a
loop. If

 ���� �
, then getting � ��� that satisfies this constraint

is infeasible as this requires � ��� operations.

Case (ii) All vertices of � � are of in-degree at most one.
We know that underlying graph of � � has a cycle, say � .
Consider the sub-graph of � � induced on the vertices of � ,
call it ��� . We know that ��� � � � , � � � � � � �-����� ��� � . But ���
is a cycle. Hence ��� � � � , � � � � � � �-����� � � � . Thus, we have
� ���-�� � ��! #" ��� � . This requires $ �

" # � ����� operations [14]
and is hence infeasible.

5.3.5 Technique 2: Pushback

To remove dead-ends in a topology of triggers, we propose a
simple pushback mechanism. When a data packet reaches a
dead-end, the

���
node will not be able to find a trigger corre-

sponding to the ID in the packet. In such a scenario, this
���

node would send a message to the
���

node where the packet
was last matched asking it to remove the previous trigger in
the chain. This would result in a cascading removal of trig-
gers until all the “useless” triggers are removed. We discuss
how we deal with pushbacks initiated by malicious end-hosts
and with the case of invalid IP addresses as leaves in a topol-
ogy of triggers in the next section.

Consider a dead-end trigger ��� ��� � , i.e., � is not an end-host
address and there is no other trigger with an ID that matches
� . Let � and % denote the

���
nodes responsible for � and

� respectively. Consider a packet ��� � �'& � & � that is sent into
���

. This packet is first forwarded to node � (which stores the
trigger ��� ��� �), which then forwards this packet as ��� � �'& � & �
to node % . Upon receipt of packet ��� � �(& � & � , node % detects
that there is no matching trigger for � , and hence sends a
pushback message for ID � back to node � . Here, we take
advantage of the fact that an

���
packet carries the address of

the node were the packet was last matched, which is node
� in this case (used for caching in

���
[31]). Upon receiving

the pushback message, node � needs to remove all triggers
that point to � . One way to implement this operation is to
maintain an inverted table for all triggers stored at an

���
node.

For each trigger � � ��� ��� � , we maintain an entry ��� �)� � � ������� ,
where � � ��� ��� represents the pointer to trigger � .

5.3.6 Technique 3: Trigger Challenges

To solve the problem of reflection attacks, that of dead-ends
to non-existent hosts, and that of malicious trigger removal,
we extend the solution already proposed in

���
[31]. Secure-

���
nodes challenge the insertion of every trigger that points

to an end-host. Upon receiving a trigger insertion message,
the

���
node computes a challenge and sends it back to � . In

turn, � re-sends the trigger insertion message together with
the challenge received from

���
. Finally, upon receiving this

message (with the correct challenge), the
���

node inserts trig-
ger ��� ��� � . In order to avoid maintaining state in

���
nodes for

every attempted trigger insertion, the challenge is computed
as a secret one-way hash function on the values � and � .
Since every attempted insertion of a trigger ��� ��� � yields the
same hash result,

���
nodes do not need to maintain any state

about the challenge.

To increase the robustness of this mechanism, an
���

node
can periodically change the challenge of a trigger (by chang-
ing the hash function). Since every trigger refresh message is
acknowledged in

���
, the new challenge can be piggybacked

with the acknowledgment. Note that this simple scheme not
only ensures that the trigger points to an existing end-host
but also ensures that the end-host is the one (i) which in-

9

serted and (ii) which is maintaining the trigger. We note that,
an end-host can still remove triggers when under attack since
(i) out-going traffic from the end-hosts is under its control
and (ii) the end-host already is aware of the challenge. In
fact, in the worst case, the trigger would be removed after
a timeout period (of

���
seconds [31]) as the client will not

refresh it.

A similar spoofing attack can arise when an attacker injects
malicious pushbacks, thereby removing valid triggers from
���

. We adopt a similar technique in this case: upon receiv-
ing a pushback message, an

���
node sends a challenge to

the sender of the pushback. Only when the challenge is ac-
knowledged is the trigger removed. Furthermore, since we
assume that attacks cannot snoop on communication be-
tween

���
nodes (Refer Section 4), the attacker would not be

able to respond to the challenge.

5.3.7 Defense against Multicast-based attacks

We first explain why node confluence is not as serious as
it might appear. First, the fact that an

���
public node does

not store � -constrained triggers makes it impossible for an
attacker to use this attack on public

���
nodes (which store

public triggers). Second, if the attacker attacks an
���

node
storing private triggers, the worst that can happen is that the
���

node will become overloaded. Arguably, the simplest way
for an overloaded

���
node to shed load is to drop some of

its triggers (maybe starting with the triggers that carry the
most traffic). Of course, this would cause legitimate clients to
lose triggers as well, but they can easily recover by changing
their private triggers and storing them at other nodes. If the
attacker also decides to move its triggers, this case would
degenerate to building a random multicast tree. On the other
hand, if the attacker insists on attacking the same

���
node,

this will gradually cause all legitimate clients to move their
private triggers to other Secure-

���
nodes, which would again

render the attack futile.

An attacker can attack the infrastructure by building a larger
random multicast tree and blasting packets into the infras-
tructure. However, the extent of damage that the attacker can
cause on the infrastructure would be limited by the resources
at his disposal, which is a fundamental limitation for any
communication infrastructure. To see why, consider the fol-
lowing three constraints. First, we have shown that all leaf
triggers of the multicast tree have to point to valid receivers.
Otherwise, the pushback mechanism will rapidly prune the
dead-end branches of the tree thus stopping the attack. Sec-
ond, a leaf trigger that points to an end-host � can be inserted
and maintained only by � itself. Third, � ’s ingress link can-
not be overloaded. Otherwise, the challenge updates8 sent
by

���
for � ’s trigger might be be lost, which will lead to � ’s

trigger being removed from
���

. As a result, an attacker can

8Here we assume that challenges are changed with a high fre-
quency.

build a multicast tree using only end-hosts it controls, and it
cannot send more traffic than its receivers can handle.

5.4 Summary

We summarize the advantages of Secure-
���

over the Inter-
net. First, Secure-

���
provides more functionality than the In-

ternet by means of a flexible indirection primitive. Second,
the flexibility of Secure-

���
plays a major role in enhancing

the end-hosts’ ability to defend against attacks. Finally, us-
ing simple techniques, we ensure that we do not create any
more security vulnerabilities.

5.4.1 End-host Protection Against DoS Attacks

We summarize our arguments of why Secure-
���

provides
better protection to end-hosts against DoS attacks.

1. Prevent IP level flooding attacks on end-hosts. By hid-
ing the IP address of the end-hosts, we prevent packet
floods at the IP level.

2. Inability to attack private communication. End-hosts
communicate by means of private IDs after establishing
a connection which the attackers have no knowledge of.
Hence, they cannot identify the

���
nodes which store the

private triggers of the end-hosts.
3. Alleviate flooding at the

���
level. By techniques such

as trigger dropping, and slowing down the attacker us-
ing crypto puzzles, end-hosts (servers) can provide a de-
graded service depending on the intensity of the attack.

4. Minimize collateral damage. Different services co-
located behind a common access link can isolate the
attacks on one another by removing the triggers corre-
sponding to the service under attack.

5. Access control for multicast channels. Unlike IP multi-
cast, providing access control in

���
is straightforward,

and this would prevent flooding attacks directed to-
wards multicast addresses.

5.4.2 End-host Response to Attacks on Infrastructure

IP level attack. By not revealing the IP address of the pub-
lic Secure-

���
nodes that store public triggers, we prevent IP

level attacks on public Secure-
���

nodes. Such attacks are pos-
sible on private Secure-

���
nodes, but we do not foresee this

to be a problem as private triggers are supposed to be kept
secret. Thus, as far as attacking private Secure-

���
nodes is

concerned, the best an attacker can do is to attack a random
private Secure-

���
node.

Secure-
���

level attack. Secure-
���

allows end-hosts to build
only tree communication topologies which carry packets to
valid destinations: constrained triggers ensure that end-hosts
can build only tree topologies, pushback ensures that the
packets are ultimately delivered to an IP address, and trig-
ger challenges ensure that each IP address belongs to a valid
end-host. Thus, attackers can mount an attack only to the ex-
tent of resources they have. Based on the study in [24], we

10

Trigger
Constraints

Defenses

Attacks

Eavesdropping
Impersonation

Dead−ends

Confluence

Reflection

Nodei3
Constraint

Pushback Challenges

Node

Public

Public i3

Loops
Confluences

Malicious
Trigger−Remove

Figure 8: Attacks and Defenses

expect Secure-
���

nodes to have more bandwidth than most
of the attackers.

The ability of end-hosts to re-locate their triggers is also cru-
cial to evading attacks on infrastructure nodes. In contrast, in
the Internet, an end-hosts can do little if a router that carries
its traffic is under attack.

By analyzing various attack possibilities methodically, we
identified the possible new attacks on

���
. Figure 8 summa-

rizes the various possible attacks and the techniques that pre-
vent these attacks in Secure-

���
.

6 Discussion: Secure- ��� vs. ���
In this section, we discuss how Secure-

���
differs from

���
, and

the impact of Secure-
���

’s extensions on the performance and
functionality of the original

���
.

6.1 Proposed Changes

We shall now summarize the main aspects of our re-design
which makes Secure-

���
more secure.

ID structure. The 256-bit identifier in Secure-
���

is divided
into three fields: a 64-bit prefix, a 128-bit key, and a 64-bit
suffix. In contrast, identifiers in

���
are divided into two fields,

a 128-bit prefix and a 128-bit suffix. In both Secure-
���

and
���

, end-hosts have full control on choosing the prefix and
the suffix of an ID: the prefix determines the location of a
trigger, while the suffix is used to implement anycast. IDs �
and � are matched based on the longest prefix matching rule,
given the constraint that both their keys and prefixes match.
Finally, unlike

���
, Secure-

���
defines separate ID spaces for

public and private IDs.

Constraints on triggers. Secure-
���

only allows triggers of the
form ��� ��� � where � � 	�� � � � ��� � or � � 	1� � � � ��� � .
Constraints at public Secure-

���
nodes. Public Secure-

���

nodes (i) store only
�
-constrained triggers with public IDs,

and (ii) maintain no triggers pointing to end-hosts.

Pushback. If a “dead-end” is detected, trigger removals are
cascaded up the chain of triggers.

Challenges. To prevent malicious insertion of triggers on
behalf of a victim, triggers pointing to end-hosts are chal-
lenged. Pushback messages are also challenged.

Stack of identifiers. A trigger with a stack of identifiers is
defined to satisfy the trigger constraints iff the top of the
stack satisfies the constraints. Intuitively, this definition fol-
lows from the fact that only the top of the stack is involved
in routing the packet inside the

���
infrastructure. The rest of

the stack is used by the end-hosts after the packet leaves the
���

infrastructure, and hence is not involved in the constraints.
Hence, all discussions involving a trigger with one identifier
would also apply to a stack of identifiers.

6.2 Impact on Performance

In this section, we discuss the impact of the changes made
on both data and control paths.

Data path. All the components of the re-design of
���

(trig-
ger constraints, pushback and challenges) to make it secure
are restricted to the control path. Since Secure-

���
does not

perform any additional operations on the data path, packet
forwarding should be as efficient as in the original

���
.

Trigger Challenges. Public triggers and private triggers that
do not point to end-hosts are not challenged and hence do
not have this overhead. The insertion of a trigger that points
to end-hosts requires an additional RTT. However, end-hosts
that want to eliminate this extra RTT can maintain a private
trigger in

���
even when it is not using the trigger. This would

eliminate the trigger challenge step during connection setup.

Checking Constraints. Upon receiving a request for trigger
insertion, a Secure-

���
node needs to check whether the trig-

ger is pointing to an end-point, and whether it is � or
�
-

constrained. Also, when an Secure-
���

node actually inserts
the trigger, it needs to insert an entry in an inverted table,
which is required to implement the pushback operation. One
important observation is that all these operations are per-
formed only at trigger insertion. Upon trigger refreshing,
Secure-

���
does not need to do any more operations than

���
.

We evaluate the overhead of these operations in Section 7.

Overhead with Public Triggers. Since public triggers can-
not point to end-hosts (servers) in Secure-

���
, end-hosts need

to add another level of indirection (see Section 5.1). While
this can increase the delay in contacting an end-host through
its public trigger, this penalty is incurred only by the first
packet. This is because, when the client contacts the server,
they exchange a set of private triggers.

Control on Trigger Placement. End-hosts still have the free-
dom of picking the prefix and suffix of a trigger ID. This
means that an end-host can still control the location of a trig-
ger by choosing an appropriate prefix, the only difference
being the size of the prefix and suffix (��� -bits as opposed to
� ��� -bits).

11

6.3 Impact on Functionality

While constrained triggers help in eliminating undesirable
topologies, whether this would limit the functionality and
flexibility of

���
remains to be seen. We now answer this by

showing that constrained triggers have only a limited impact
on Secure-

���
’s ability to support the basic communication

primitives: anycast, multicast, and service composition.

Mobility. Constrained triggers do not have any impact on mo-
bility, as the constraints are not computed over the IP ad-
dresses of the end-hosts.

Multicast. Applications can still build legitimate multicast
trees as in

���
by using � -constrained triggers. The triggers

that are used to build multicast trees are private triggers and
hence having � -constrained triggers would not expose the
multicast group to eavesdropping attacks.

Anycast. Anycast functionality is not affected by trigger con-
straints. Anycast requires insertion of triggers (i) which point
to different end-hosts, and (ii) the IDs of which share the
same prefix and key. In addition, the suffix of each trigger
ID encodes application semantics such as end-host location.
Let ��� ��� � be an anycast trigger inserted by host � , where
� ’s address is encoded in the fields � � ��� � � � � and � � ��� � � � � .
If the trigger is � -constrained then � �
	�� � � �� ��� � , and the
end-host has the entire freedom in choosing trigger’s ID � .
If the trigger is

�
-constrained, we have � �
	�� � � �� ��� �
	�� � �

(see Figure 7(d)). Since � �
	�� � should be the same for every
anycast trigger, all triggers need to share � � 	�� � . Thus, in an
anycast group with

�
-constrained triggers, end-hosts need to

exchange the secret key � �
	�� � out-of-band.

Service composition. Disallowing insertion of arbitrary trig-
gers still allows sender-driven service composition, but
weakens the flexibility of receiver-driven service composi-
tion. In particular, it will not be possible for a receiver to
redirect packets with a given ID � to an intermediate node
with a given ID � , since this would require the receiver to
insert a trigger of the form ��� ��� � , where � and � are fixed
in advance. However, this situation can be dealt with at the
application level by negotiating a private trigger that will sat-
isfy either an � or an

�
-constraint with the sender or the inter-

mediate node. In particular, if � is given, the receiver can ask
the sender to send packets with ID

 � ��� � instead of � . We
expect this constraint to be acceptable for the vast majority
of applications.

7 Evaluation

We implemented Secure-
���

and deployed it on a cluster of
Linux machines. For efficiency, our one-way hash function is
based on the advanced encryption standard (AES) (aka. Rijn-
dael block cipher) [10] in the Matyas, Meyer, and Oseas con-
struction [22]. Note that any other keyed one-way hash func-
tion (i.e., message authentication code) would also suffice,
for example HMAC-MD5 [3]. The 128-bit key is encrypted

Scenarios in Trigger Insertion Operation Overhead (in ���)
No constraints checking (�
) ����8 �
Challenge fails (Secure- 	�
) �$8

Challenge matches, constraints fail �$8 �
Challenge, constraints match �	� 8 �

Challenge, constraints match (inverted table)

�$8 �
Figure 9: Overhead for processing trigger insertion requests

by the AES cipher and then the output is XORed with the
input. The second step is necessary to make the function ir-
reversible. We get two different one-way functions,

 �
and �

, by keying the cipher with two different publicly known
keys (different from the keys we hash).

7.1 Computational Overhead

As we mentioned in Section 6.2, checking trigger constraints
and challenges involves computation of a one-way hash
function. To measure the additional overhead, we ran tests on
a Secure-

���
node running on a 866 MHz Pentium III machine

running Linux 2.4.8. The results are averaged over half a mil-
lion trigger insertions. The trigger insertion time is computed
as the time to add the entry to the trigger list from the time
the packet was completely received. Clearly, if the challenge
checking or trigger constraint checking fails, the trigger is
not inserted.

We compare the time it takes to process the trigger insertion
in all the possible cases, i.e.: (i) without any checking (i.e.,
as in

���
), (ii) challenge fails (in Secure-

���
), (iii) challenge

succeeds but the constraints do not match (in Secure-
���

), and
(iv) trigger is successfully inserted (in Secure-

���
).

Table 9 indicates that checking constraints at the
���

nodes in-
creases the overhead of trigger insertion only by about ����� .
Cases (ii) and (iii) take lower time than case (i) as the trigger
is not inserted in these cases. We also note that the running
time for a hash-computation is less than

�� � (not shown in
the table). We finally note that the cost of a trigger inser-
tion including the maintenance of an inverted trigger table
(for pushback) takes

��� � �	 � . Though this is about � � � times
the cost of insertion in original

���
, this is incurred only upon

a successful trigger insertion — trigger refreshes do not in-
volve this extra cost.

7.2 Reaction to DoS Attack

To illustrate how Secure-
���

’s flexibility can help end-hosts
to defend against DoS attacks, we illustrate the technique
described in Section 5.2.2.

We use a server � running behind a cable modem with the
total inbound bandwidth of approximately � ��� Mbps (mea-
sured at the time of our experiments). � maintains � � public
triggers, and one private trigger, through which it receives a
traffic of about � ��� kbps. We emulate an attacker by blast-
ing � Mbps traffic uniformly distributed among � ’s public

12

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10 20 30 40 50 60 70 80 90

D
at

a
ra

te
 (

kb
ps

)

Time (in seconds)

Available bandwidth for private connection
Required rate for private connection

Figure 10: Reaction to DoS attack

triggers. In response, � starts dropping public triggers every
� � � until the traffic on the private connection suffers no more
losses. Figure 7.2 shows how much bandwidth is available
to the private connection as a function of time. As expected,
when seven triggers are dropped, the attack traffic rate drops
to around � �
� Mbps

� � � Mbps � ��� � � � � � ��� . Therefore,
� will receive the entire traffic through the private trigger,
since the private trigger is unaffected. The contention based
nature of cable connection, along with the packet-shaper im-
plemented at the cable modem are possible reasons why this
is not a perfect step-function.

8 Practical Considerations

Deployment. In this paper, we assume that Secure-
���

is de-
ployed by a single provider such as Akamai. This allows us
to ignore trust and security issues between Secure-

���
nodes.

However, a possible scenario is the presence of multiple
providers much like in the Internet, and this raises questions
about trust, security and policies between providers. Answer-
ing these questions is a topic of future work.

Public ID resolution. To connect to a server, a client needs
to find a public ID of that server. One possibility would be
to use DNS in order to obtain public IDs. Another possibil-
ity would be to use a lookup protocol such as Chord to im-
plement name resolution [8]. Evaluating these alternatives
from the viewpoint of security and availability, and devel-
oping new solutions are important aspects of our future re-
search.

Secure-
���

state. Secure-
���

nodes need to maintain state in
the form of public and private triggers. An attacker can then
mount a DoS attack by compromising a very large number of
end-hosts, and making each of them insert a large number of
triggers. This may overload some Secure-

���
servers which

will prevent legitimate triggers from being inserted. While
this is a topic of future research, we make two observations.
First, if the attacker does not attack the entire infrastructure,
clients might be able to route around the attack by re-locating

their triggers to other Secure-
���

nodes. Second, under heavy
load, Secure-

���
nodes can challenge every trigger insertion

by sending a puzzle, thus slowing down the attack.

9 Related Work

Due to the potentially adverse economic impact of DoS at-
tacks and their prevalence in today’s Internet [24], providing
protection against these attacks has received considerable at-
tention recently. The proposed solutions can be roughly di-
vided into two classes: IP-level and overlay-based solutions.

IP level solutions are based on two key techniques: IP trace-
back and pushback. IP techniques aim to detect the sources
of DoS attacks even when the attacker spoofs the source ad-
dresses. With pushback technique [21], routers try to iden-
tify the offending traffic and then push filters to the upstream
routers to stop the attack as close to the originators as possi-
ble. Both of these techniques require router support: IP trace-
back requires routers to mark packets [28, 11] or send special
ICMP messages [4], while pushback requires routers to de-
tect the offending traffic and perform packet classification.
In contrast, our solution requires no router support. Further-
more, the detection of the attack is left to the end-hosts which
in general have more information than the network about the
traffic they receive. This makes our techniques more fine-
grained and flexible than the aforementioned ones.

Secure Overlay Services [20] was one of the first solutions
to explore the idea of using overlay networks for pro-actively
defending against DoS attacks. SOS protects end-hosts from
flooding attacks by (i) installing filters at the ISP providing
connectivity to the end-host and (ii) using an overlay network
to authenticate the users. Mayday [1] generalizes this archi-
tecture and analyzes the implications of choosing different
filtering techniques and overlay routing mechanisms.

However, these solutions assume that the set of authorized
users is known in advance, and that the set changes infre-
quently so that updating the authentication rules in the over-
lay nodes occurs rarely. In addition, these proposals assume
support from the IP infrastructure for providing basic filter-
ing near the target nodes, which might not be possible in
the general case. In contrast, our solution provides protec-
tion to all end-hosts without imposing any restriction on the
set of senders, and doesn’t require support from the IP infras-
tructure. Another point worth noting is that an infrastructure
such as

���
can easily support the authentication functionality

by composing a service which provides the authentication.

Our principle of hiding the IP address is similar in spirit
to Crowds [26], Onion-routing [25], Chaum-Mixes [7] and
Web-Mix [5]). However, the goal of these systems is to pro-
vide anonymity rather than to enhance security.

The first use of cryptographic puzzles is due to Merkle [23],
who used puzzles for the first instantiation of a public-key
protocol. Dwork et al. propose puzzles to discourage spam-

13

mers from sending junk email [13]. Juels et al. used puzzles
to prevent TCP SYN flooding [17]. Aura et al. [2] and Dean
et al. [12] propose puzzles to defend against DoS on the ini-
tial authentication.

Finally, we note that while in this paper we assume a secure
overlay routing infrastructure, related pieces of work in this
area ([6], [30]) have studied various attacks in which the
infrastructure’s nodes are compromised.

10 Conclusions

In this paper, we present an overlay communication infras-
tructure that provides more functionality and at the same
time better protection against DoS attacks than the Internet.
Our solution, Secure-

���
(a re-design of

���
), is built around

three design principles: enabling end-hosts to communicate
without revealing their IP addresses; empowering end-hosts
to stop or slow-down a DoS attack directed to them, and to
route around DoS attacks directed at the infrastructure; and
making sure that we do not introduce new vulnerabilities.

Secure-
���

uses three techniques to eliminate the vulnerabili-
ties of

���
. (i) trigger constraints to restrict the communication

topology of an application to a tree, (ii) pushback to elimi-
nate chains of triggers pointing to dead-ends, and (iii) trigger
challenges to avoid reflection. We argue that these changes
have virtually no impact on

���
’s functionality. In addition,

using experimental results we argue that the overhead intro-
duced by Secure-

���
on the control path is acceptable.

While in this paper, we have tried to argue that our system
does not introduce new vulnerabilities, more remains to be
done. Section 8 mentions several open questions. In addi-
tion, we plan to deploy Secure-

���
in a wide-area testbed (e.g.

on PlanetLab). Ultimately, only real applications and users
would help to answer these questions.

References

[1] D. G. Andersen. Mayday: Distributed Filtering for Internet
Services. In USITS, Seattle, WA, 2003.

[2] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant Authen-
tication with Client Puzzles. In Security Protocols—8th In-
ternational Workshop, Lecture Notes in Computer Science,
Cambridge, United Kingdom, Apr. 2000. Springer-Verlag.

[3] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Func-
tions for Message Authentication. In N. Koblitz, editor, Ad-
vances in Cryptology - Crypto ’96, pages 1–15. Springer-
Verlag, 1996. Lecture Notes in Computer Science Vol. 1109.

[4] S. Bellovin. ICMP Traceback Messages, Internet draft, draft-
bellovin-itrace-00.txt, work in progress, march 2000, 2000.

[5] O. Berthold, H. Federrath, and S. Köpsell. Web MIXes: A
System for Anonymous and Unobservable Internet Access.
In H. Federrath, editor, International Workshop on Design Is-
sues in Anonymity and Unobservability, volume 2009 of Lec-
ture Notes in Computer Science, pages 115–129, Berkeley,
CA, USA, July 2000. Springer-Verlag, Berlin Germany.

[6] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.
Wallach. Secure Routing for Structured Peer-to-peer Overlay
Networks. In OSDI, Boston, MA, Dec. 2002.

[7] D. L. Chaum. Untraceable Electronic mail, Return addresses,
and Digital pseudonyms. Communications of the ACM,
24(2):84–88, Feb. 1981.

[8] R. Cox, A. Muthitacharoen, and R. Morris. Serving DNS
using Chord. In IPTPS 2002, Cambridge, MA, March 2002.

[9] Security of e-commerce Threatened by 512-bit number fac-
torization. http://www.cwi.nl/˜kik/persb-UK.
html, Aug. 1999. CWI press release.

[10] J. Daemen and V. Rijmen. AES proposal: Rijndael, Mar.
1999.

[11] D. Dean, M. Franklin, and A. Stubblefield. An Algebraic
Approach to IP Traceback. Information and System Security,
5(2):119–137, 2002.

[12] D. Dean and A. Stubblefield. Using Client Puzzles to Pro-
tect TLS. In Proc. of the 10th USENIX Security Symposium,
Washington, D.C., Aug. 2001. USENIX.

[13] C. Dwork and M. Naor. Pricing via Processing or Combat-
ting Junk Mail. In E. Brickell, editor, Advances in Cryptology
— CRYPTO ’92, volume 740 of Lecture Notes in Computer
Science, pages 139–147. International Association for Cryp-
tologic Research, Springer-Verlag, 1993.

[14] P. Flajolet and A. Odlyzko. Random Mapping Statistics. In
Advances in Cryptology — EUROCRYPT ’89, volume 434 of
Lecture Notes in Computer Science. International Association
for Cryptologic Research, Springer-Verlag, 1990.

[15] S. Gibson. The strange tale of the denial of service attacks.
http://grc.com/dos/grcdos.htm, Mar. 2002.

[16] J. Ioannidis and S. M. Bellovin. Implementing Pushback:
Router-Based Defense Against DDoS Attacks. In NDSS
2002, San Diego, CA, Feb. 2002. Internet Society.

[17] A. Juels and J. Brainard. Client Puzzles: A Cryptographic
Countermeasure Against Connection Depletion Attacks. In
Proc. of the Symposium on NDSS, pages 151–165, 1999.

[18] S. Kent and R. Atkinson. IP Encapsulating Security Payload
(ESP). Internet RFC 2406, IETF, Nov. 1998.

[19] S. Kent and R. Atkinson. Security Architecture for the Inter-
net Protocol. Internet RFC 2401, IETF, Nov. 1998.

[20] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. In Proc. of ACM SIGCOMM 2002, pages
20–30, Pittsburgh, PA, Aug. 2002.

[21] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson,
and S. Shenker. Controlling High Bandwidth Aggregates in
the Network. CCR, 32(3):62–73, July 2002.

[22] S. Matyas, C. Meyer, and J. Oseas. Generating Strong One-
way Functions with Cryptographic Algorithm. IBM Techni-
cal Disclosure Bulletin, 27:5658–5659, 1985.

[23] R. Merkle. Secure Communication Over Insecure Channels.
Commun. ACM, 21(4):294–299, Apr. 1978.

[24] D. Moore, G. M. Voelker, and S. Savage. Inferring Inter-
net Denial-of-Service Activity. In Proc. of USENIX Security,
pages 9–22, 2001.

[25] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. Anony-
mous Connections and Onion Routing. IEEE JSAC, 16(4),
May 1998. Spl. Issue on Copyright and Privacy Protection.

[26] M. K. Reiter and A. D. Rubin. Crowds: Anonymity for Web
Transactions. ACM Transactions on Information and System
Security, 1(1):66–92, 1998.

14

[27] R. L. Rivest. The MD5 message-digest algorithm. RFC 1321,
Apr. 1992.

[28] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Prac-
tical Network Support for IP Traceback. In Proc. of ACM
SIGCOMM 2000, pages 295–306, Stockholm, Sept. 2000.

[29] B. Schneier. Why cryptography is harder than it looks.
http://www.counterpane.com/whycrypto.
html, 1997.

[30] E. Sit and R. Morris. Security Considerations for Peer-to-
peer Distributed Hash Tables. In Proc. of IPTPS, 2002, Cam-
bridge, MA, Mar. 2002.

[31] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In Proc. of ACM SIG-
COMM 2002, pages 10–20, Pittsburgh, PA, Aug. 2002.

[32] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Protocol for Internet Applications. In Proc. of ACM SIG-
COMM 2001, pages 149–160, San Diego, CA, Aug. 2001.

[33] D. Wallner, E. Harder, and R. Agee. Key Management for
Multicast: Issues and Architectures. Internet RFC 2627,
IETF, June 1999.

[34] C. Wong, M. Gouda, and S. Lam. Secure Group Communi-
cations Using Key Graphs. In Proc. of the ACM SIGCOMM
’98, pages 68–79, 1998.

15

