Griffin: Towards an Agile, Predictive Infrastructure

Anthony D. Joseph Sahara Retreat June 10, 2002

Motivation

- Existing Sahara components provide:
 - Service composition, topology-awareness, brokering / confederation, market-based resource allocation
- Other necessary components
 - Application mechanisms for conveying information to/from the infrastructure
 - Multi-layer network weather modeling and prediction
 - Overlay network for better than IP functionality
- \Rightarrow Griffin project
 - Focus on agility and behavior prediction for legacy and new applications

Improving Internet Connectivity

Satellite Regional Area

High Mobility

Low Mobility

- Near-continuous connectivity: plane, satellite, inbuilding, ... (BARWAN, Daedalus, Rover)
- But, a laptop app sees a wider range of *variability*
 - $3 \rightarrow 5$ orders of magnitude of bandwidth from 10's Kb/s \rightarrow 1 Gb/s
 - 4 \rightarrow 6 orders of magnitude of latency from 1 µsec \rightarrow 1,000's ms
 - 5 \rightarrow 8 orders of magnitude of loss rates from 10⁻⁴ to 10⁻¹² BER

Complex Internet Infrastructure

- Today: 3-tier hierarchy
 - Server, Client, Proxy
 - Static partitioning (edge-side includes, server \rightarrow client applets)
- Sahara: Dynamic application partitioning
 - Push functionality and data everywhere
 - Broker-based service composition/confederation

New Applications / Mobile Devices

• New real-time apps w/ diff. constraints: latency, BW, ...

- Most apps designed for desktop environment
- Neither best-effort or unbounded retransmission may be ideal
- Mobile devices mean varying loss/latency/BW conditions
- Result: Poor/variable performance from traditional apps

Problems with Traditional Distributed Applications

- Current approaches are insufficient
 - Static client/server/(proxy) partitioning
 - Strong abstraction boundaries hide differences and variability
- LAN assumption (low latency, low loss, high BW)
 - IP: abstracts different link technologies (wired / wireless)
 - Abstraction boundaries (APIs) hide the number of RPCs
- Added assumption: stability of environment
 - Unlimited power, stable network connection, ...
 - Static applications break or perform poorly
 - Dynamic applications built ad hoc w/ "reactive to change" model
- Agility: key metric is time to react and adapt
 - Latency and RTT limit agility

Griffin

- A creature with the head, beak, wings, torso, and claws of an Eagle, and the hind legs and ears of a Lion
 - Signifies the union of strength, agility, and intelligence
 - Sacred to the Greek god Apollo
- Protectors of kings in many Greek stories, guarding their treasures and mines

Griffin Goals

- Leverage Sahara policies and control mechanisms
- Users always see excellent (= local, lightly loaded) application behavior and performance
 - Independent of the current infrastructure conditions
- Help legacy applications handle changing conditions
 - Analyze, classify, and predict behavior
 - Pre-stage dynamic/static code/data (activate on demand)
- Architecture for developing new applications
 - Input/control mechanisms for new applications
 - Application developer tools

Griffin: An Adaptive, Predictive Approach

• Continuous, multi-level, multi-timescale introspection

- Collect & cluster link, network, and application protocol events
- Broader-scale: Correlate AND communicate short-/long-term events and effects at multiple levels (breaks abstractions)
- Challenge: Data mgmt (RT analysis, storage, propagation)
- Convey app reqs/network info to/from lower-levels
 - Break abstraction boundaries in a controlled way
 - Challenge: Extensible interfaces to avoid existing least common denominator problems
- Overlay more powerful network model on top of IP
 - Avoid standardization delays/inertia
 - Enables dynamic service placement
 - Challenge: Efficient interoperation with IP routing

Towards an Agile, Predictive Infrastructure

Griffin / Sahara Network Layers

Some Enabling Infrastructure Components

- Tapas network characteristics toolkit
 - Measuring/modeling/emulating/predicting delay, loss, ...
 - Provides Sahara with micro-scale network weather information
- REAP protocol modifying / application building toolkit
 - Introspective mobile code/data support for legacy / new apps
 - Provides Sahara with dynamic placement of data and service sub-components
- Brocade, Mobile Tapestry, and Fault-Tolerant Tapestry
 - Overlay routing layer providing Sahara with efficient application-level object location and routing
 - Mobility support, fault-tolerance, varying delivery semantics

Tapas

- Novel data preconditioning-based analysis approach
 - More accurately models/emulates long-term and short-term dependence effects than previous approaches
 - Versus Gilbert, n-order Markov
- Tools:
 - Multitracer: Multi-layer trace collection and analysis
 - MTA: A Markov-based Trace Analysis Algorithm
 - M³: Multi-layer Markov Model Algorithm
 - Synthetic trace generators using both algorithms
 - WSim: Wireless link simulator (currently trace-driven)
- Developing prediction-based feedback algorithms

Some Tapas Results

- A better understanding of effects of link-level effects on network transport
- 1st cut simple socket interface model for communicating with lower protocol stack layers
- Accurate models ⇒ Accurate simulation ⇒ Better application-level protocol design
- Preliminary result: Prediction enables better response time to discontinuous changes in error rate
- See Tuesday morning Sahara talk for more details
- http://www.cs.berkeley.edu/~almudena/tapas/

- Introspective code / data migration in 3-tier hierarchies
 - Distributes server load, empowers limited devices
 - Provides illusion of high connectivity
- Combines static trace analysis w/ dynamic monitoring of clients to predict appl'n / communication behavior
 - Identify and optimize code/data placement
 - Pre-stage statically/dynamically generated components
 - Explore various granularities of code & data migration
 - Predict costs using multiple criteria
- Building E-mail OceanStore application this summer
 - Exploring conflict resolution strategies

REAP Toolkit

- 1st cut toolkit to explore and test ideas
 - Embeds remote evaluation in servers
 - Clients execute mobile procs (batched protocol cmds) on server
 - Reduces RTT and bandwidth sensitivity
- Showed significant IMAP/SMTP improvements
 - 46 to 89% performance improvement for slow networks
- Protocol event clustering tool
 - 100x reduction in number of states to analyze (really 1,000x)
- See Tuesday morning OceanStore talk about E-mail app
- http://www.cs.berkeley.edu/~czerwin/research.html

Brocade, Mobile Tapestry, and Fault Tolerant Tapestry

- Starting point is Tapestry
 - Distributed Object Location and Routing (DOLR) overlay network built as a part of OceanStore

• Extend Tapestry with unique, powerful routing functions

- SLA-compatible efficient wide-area routing
- Rapid, scalable mobility support
- Rapid fault route-around using pre-computed backup routes
- Monitoring, measurement, and analysis entry point
- See Monday joint and Tuesday OceanStore talks for more details
- http://www.cs.berkeley.edu/~ravenben/tapestry/

Brocade

- Overlay networks can suffer from inefficient crossdomain routing
 - Higher per message latency and wasted wide-area bandwidth
- Brocade
 - Eliminates unnecessary wide-area hops for inter-domain msgs
 - Reduces wide-area bandwidth utilization
 - Intuition: route directly to destination domain / AS
- Results:
 - 60 to 70% reduction in Relative Delay Penalty (latency)
 - Up to 75% reduction in average message bandwidth in wide area cases

Mobile Tapestry

- Handle large-scale, rapid, simultaneous node mobility
- Handling basic mobility
 - Add a layer of indirection to Tapestry by treating nodes as objects and using Tapestry object location
 - Uses Tapestry locality-based routing to reduce overhead
- Handling rapid, simultaneous mobility
 - Add a layer of hierarchy
- Results:
 - 87% reduction in RDP (latency)
 - 75% reduction in msgs for 1K simultaneous roaming nodes
 - 1000x reduction in msgs for 1K nodes roaming together

Some Open Issues

- Challenges of prediction
 - Time to disseminate information and predictions
 - Accuracy of predictions
- Complexity of building agile applications
 - Domains of applicability: latency, bandwidth, congestion, ???
 - Extensible interfaces: How general? Approaches?
- SLA compatibility
 - Extra cost? Loss of fault tolerance?
 - Extracting policies from BGP

Next Steps

- Introspection
 - Exploring new modeling and clustering algorithms
 - Exploring prediction algorithms
- Explore data migration in OceanStore
 - IMAP/SMTP E-mail application
- Standardize DOLR interface
 - Deploy testbed on Intel's PlanetLab
 - Develop guarantee-based analysis for Fault Tolerant Tapestry

Griffin: Towards an Agile, Predictive Infrastructure

Anthony D. Joseph Sahara Retreat June 10, 2002

