OPCA: Robust Interdomain Policy Routing and Traffic Control

Sharad Agarwal

Chen-Nee Chuah, Randy H. Katz

{sagarwal,randy}@eecs.berkeley.edu, chuah@ece.ucdavis.edu.

[<-->]

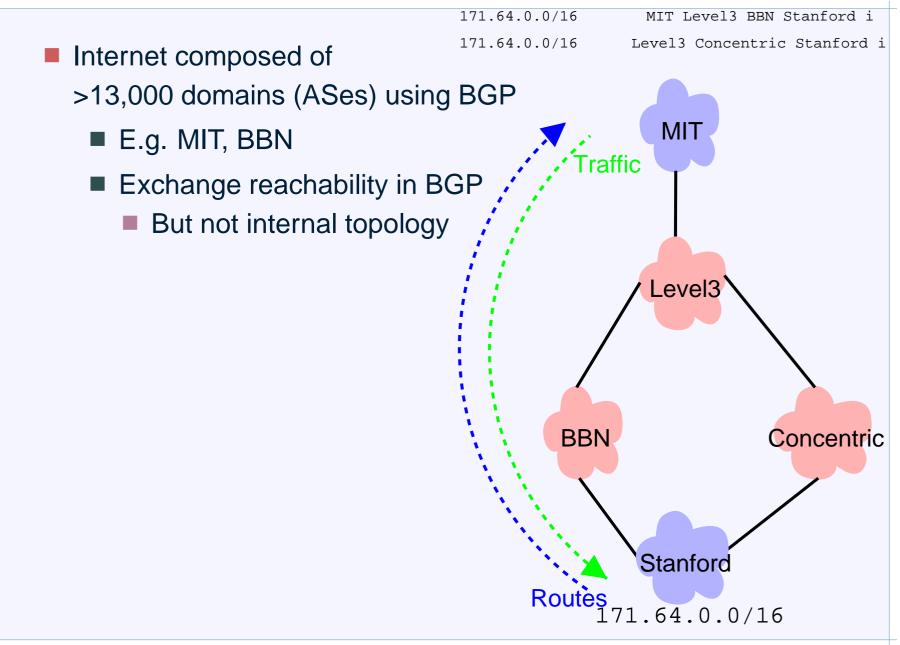
Outline

Introduction

- BGP primer
- Problem statement
- Prior work : inadequate solutions
- OPCA
 - Overview
 - Completed components, protocol
 - Evaluation

BGP Introduction

Internet composed of


>13,000 domains (ASes) using BGP

E.g. MIT, BBN

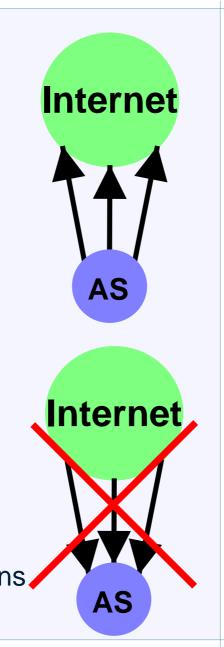
Exchange reachability in BGP


But not internal topology

BGP Introduction

BGP Shortcomings

- Congestion or failure
 - Seen at destination
 - Cannot influence source
 - Convergence slow
 - No explicit control



- Multihomed stub ASes increasing
 - Two benefits

- Multihomed stub ASes increasing
 - Two benefits
- Failover
 - Primary provider + redundant access links
 - However, limited by BGP : ~15 minutes

- Multihomed stub ASes increasing
 - Two benefits
- Failover
 - Primary provider + redundant access links
 - However, limited by BGP : ~15 minutes
- Traffic load balancing
 - Outgoing traffic
 - Use smart BGP route selection
 - · Rexford, Routescience, etc.

- Multihomed stub ASes increasing
 - Two benefits
- Failover
 - Primary provider + redundant access links
 - However, limited by BGP : ~15 minutes
- Traffic load balancing
 - Outgoing traffic
 - Use smart BGP route selection
 - · Rexford, Routescience, etc.
 - Incoming traffic
 - Not possible today ... (sort of)
 - Can pollute BGP with weird routes
 - Local optimizations have global ramifications
 - Can't scale, not effective enough

Goal

- Improve fail over time from ~15 minutes
- Improve time to shift incoming traffic between paths
 - Current BGP techniques offer no control

Problem Statement

Goal

- Improve fail over time from ~15 minutes
- Improve time to shift incoming traffic between paths
 - Current BGP techniques offer no control
- Constraints
 - Coexist with deployed IGP/EGP
 - Allow incremental deployment
 - Incremental replacement of BGP
 - Detect & avoid oscillations, divergence due to conflicts
 - Be scalable

Prior Work

Limit prefix length, NOPEER, flap limiting

Don't solve underlying issue

Prior Work

Limit prefix length, NOPEER, flap limiting

- Don't solve underlying issue
- MPLS / DiffServ based Intra-domain TE solutions
 - Would follow BGP routes
 - We don't expect open MPLS clouds everywhere

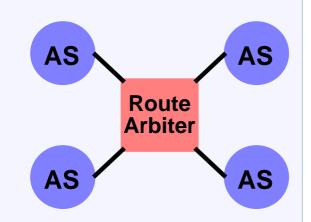
Prior Work

Limit prefix length, NOPEER, flap limiting

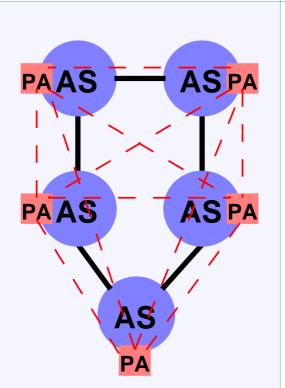
- Don't solve underlying issue
- MPLS / DiffServ based Intra-domain TE solutions
 - Would follow BGP routes
 - We don't expect open MPLS clouds everywhere
- RON, Routing Arbiter, Nimrod
 - Unscalable in our scenario

Outline

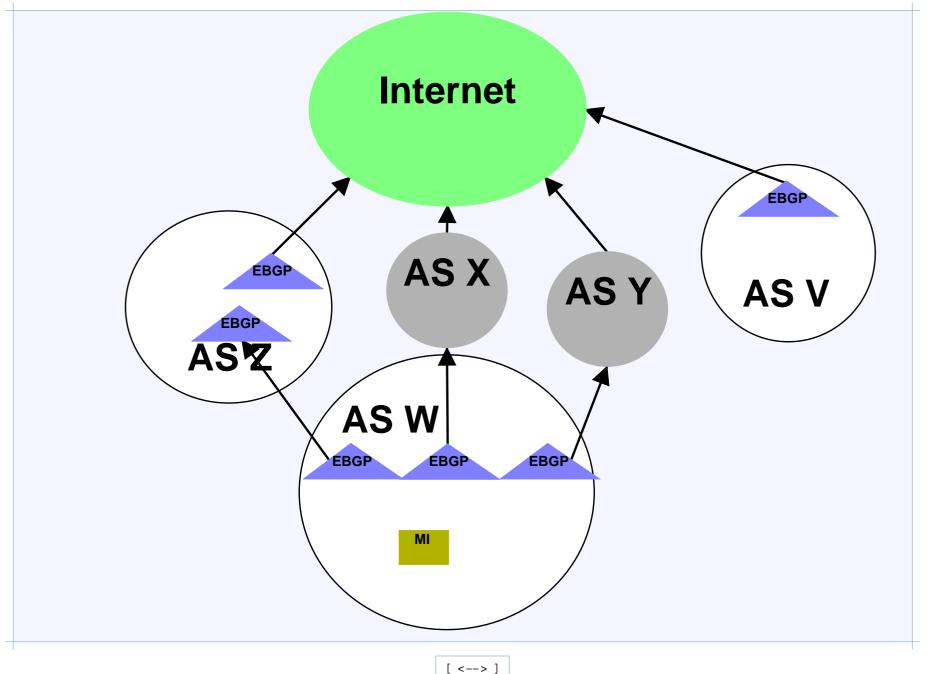
Introduction


- BGP primer
- Problem statement
- Prior work : inadequate solutions
- OPCA
 - Overview
 - Completed components, protocol
 - Evaluation

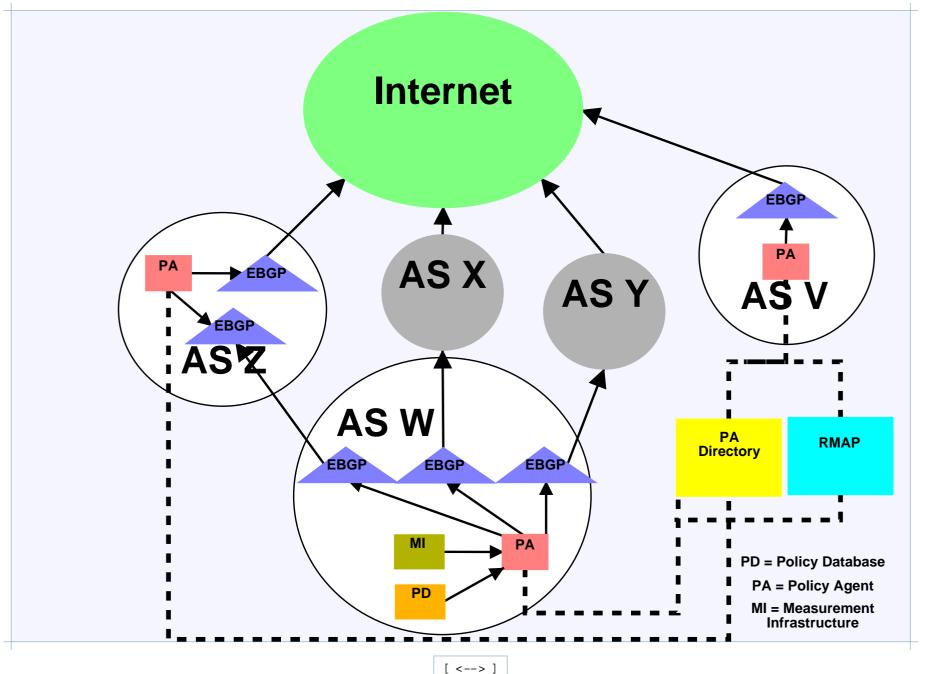
How to design routing control structure?


- How to design routing control structure?
 - Local optimization isn't enough
 - Locus of control is remote

- How to design routing control structure?
 - Local optimization isn't enough
 - Locus of control is remote
 - Global optimization unattainable
 - Computationally complex
 - Link state
 - · Scalability is an issue
 - Full disclosure of policies bad



- How to design routing control structure?
 - Local optimization isn't enough
 - Locus of control is remote
 - Global optimization unattainable
 - Computationally complex
 - Link state
 - · Scalability is an issue
 - Full disclosure of policies bad
 - Middle ground
 - Logically separate routing control plane
 - Find loci of control
 - Negotiate policy control
 - Adapt to non-responsiveness, network change



OPCA: Architecture

OPCA: Architecture

Components of OPCA

Policy database

- Important ASes (e.g. \$\$ customers)
- Local application servers
- SLAs & pricing constraints

Components of OPCA

- Policy database
 - Important ASes (e.g. \$\$ customers)
 - Local application servers
 - SLAs & pricing constraints
- Measurement infrastructure
 - Already exists in most ASes
 - E-BGP link info, customer-server traffic

Components of OPCA

- Policy database
 - Important ASes (e.g. \$\$ customers)
 - Local application servers
 - SLAs & pricing constraints
- Measurement infrastructure
 - Already exists in most ASes
 - E-BGP link info, customer-server traffic
- PA Directory
 - 1 or many (e.g. DNS)
- Relationship & Topology Map
 - 1 or many
 - Find likely route, transit / peering relationships

OPP: Protocol Messages

UDP control messages

Reverse path may not be available for session

- Direct PA to PA addressing
 - Don't want BGP-like propagation

OPP: Protocol Messages

UDP control messages

Reverse path may not be available for session

- Direct PA to PA addressing
 - Don't want BGP-like propagation

Message	Description
PA_locate(AS)	PA to PA directory request for
	address of PA in remote AS
PA_locate_reply(AS,ipaddr,port,timeout)	PA directory entry reply
PA_route(prefix)	PA to PA request for best route
PA_route_reply(prefix,AS_Path)	PA route reply
PA_block(prefix,AS1,AS2)	PA to PA request to
	block all routes for prefix
PA_block_reply(error_code,prefix,AS1,AS2)	PA block status reply
PA_select(prefix,AS1,AS2)	PA to PA request to
	select a particular route
PA_select_reply(error_code,prefix,AS1,AS2)	PA select status reply

Example

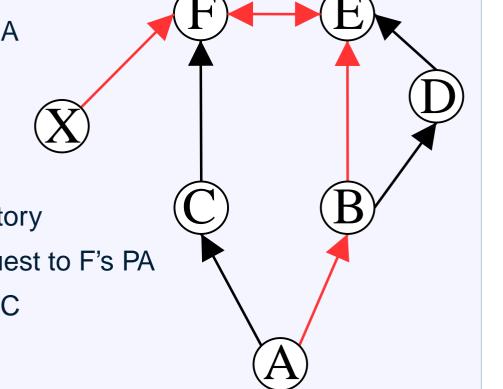
[<-->]

 $\blacksquare X \text{ uses } X \to F \to E \to B \to A$

$\blacksquare B \rightarrow A breaks$

B's BGP session resets

B sends withdrawal to E & D


- E receives withdrawal, selects D, announces to F
- F selects new route through D
- D sends withdrawal to E
- E sends withdrawal to F
- F selects route through C

Example

 $\blacksquare X \text{ uses } X \to F \to E \to B \to A$

$\blacksquare B \rightarrow A \text{ breaks}$

- A notices drop in traffic
- A's PA queries RMAP
- A's PA queries PA directory
- A's PA sends block request to F's PA
- F selects route through C

Key Design Factors

Inherent advantages of OPCA

- Overhead of OPCA is fixed regardless of # of BGP hops
 - Control messages skip BGP propagation
- OPCA does not experience per hop router delay
 - Control messages exchanged between PAs
 - Skip router delay, dampening

Key Design Factors

Inherent advantages of OPCA

- Overhead of OPCA is fixed regardless of # of BGP hops
 - Control messages skip BGP propagation
- OPCA does not experience per hop router delay
 - Control messages exchanged between PAs
 - Skip router delay, dampening

But

- Avoid policy conflicts
- Avoid oscillations

Outline

Introduction

- BGP primer
- Problem statement
- Prior work : inadequate solutions
- - Overview
 - Completed components, protocol
 - Evaluation

Evaluation Methodology

Component analysis

- Use real topologies, real BGP tables
- Evaluate individual components
 - RMAP
 - Scalability

Evaluation Methodology

Component analysis

- Use real topologies, real BGP tables
- Evaluate individual components
 - RMAP
 - Scalability
- Emulation
 - Evaluate existing BGP architecture (ongoing...)
 - Code complete PA, PD (ongoing...)
 - Evaluate OPCA (ongoing...)

RMAP Implemented

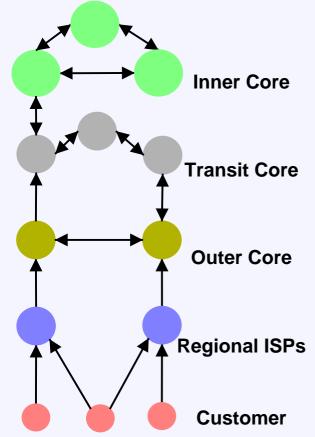
Relationship & Topology Map

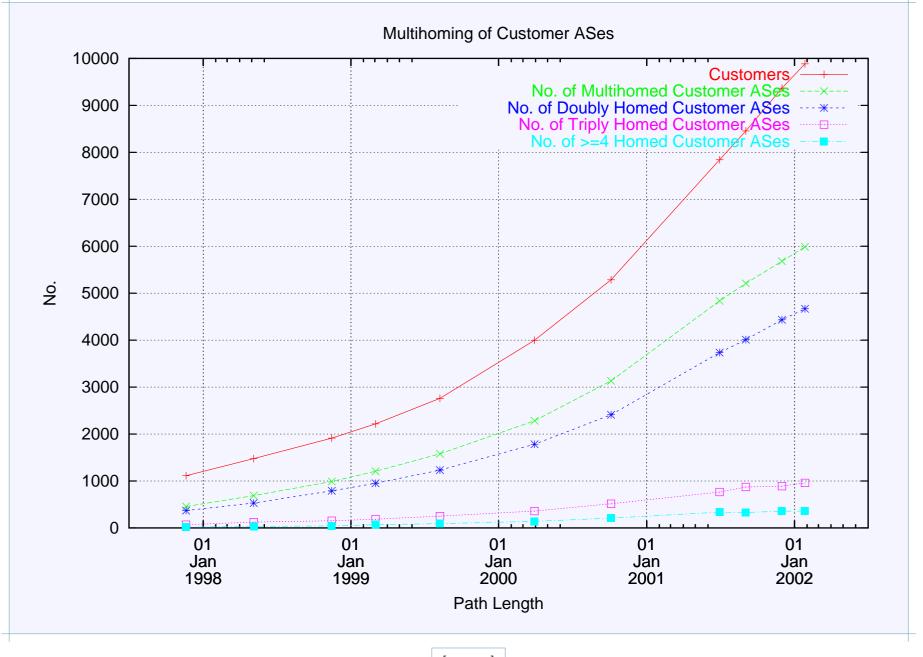
- INFOCOM 2002
- "Characterizing the Internet Hierarchy from Multiple Vantage Points"

RMAP Implemented

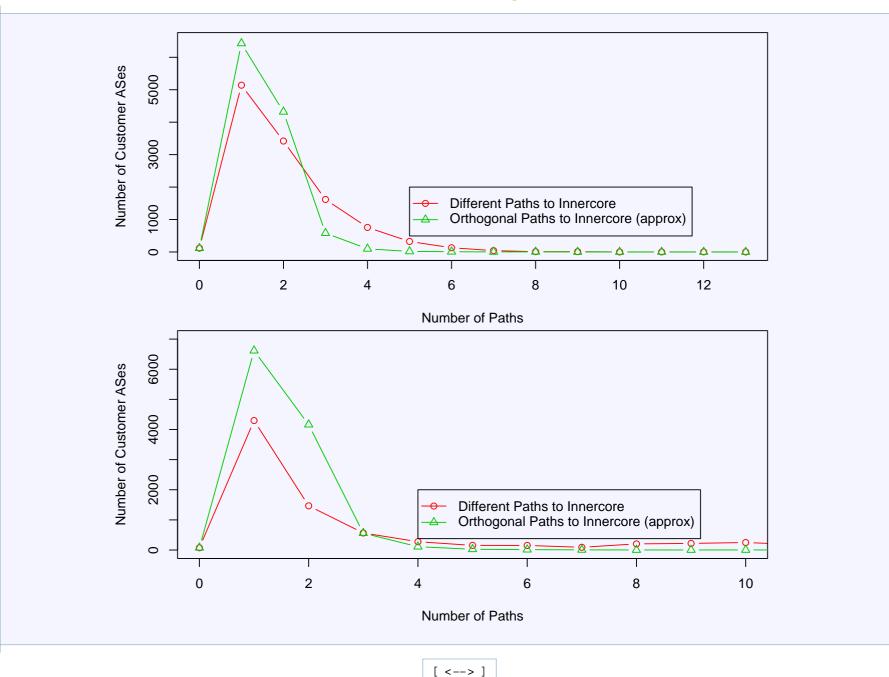
Relationship & Topology Map

INFOCOM 2002


"Characterizing the Internet Hierarchy from Multiple Vantage Points"


Inferred Relationships for 23,935 AS Pairs

Relationship	# AS pairs	Percentage
Provider-customer	22,621	94.51%
Peer-peer	1,136	4.75%
Unknown	178	0.74%


Distribution of ASes in Hierarchy

Level	# of ASes
Inner core (0)	20
Transit core (1)	129
Outer core (2)	897
Regional ISPs (3)	971
Customers (4)	8898

[<-->]

- Not all stub ASes will use OPCA
 - About half can switch between 2 paths
 - To the core of 20 ASes
 - Also need to check orthogonality to 2nd tier

- Not all stub ASes will use OPCA
 - About half can switch between 2 paths
 - To the core of 20 ASes
 - Also need to check orthogonality to 2nd tier
- May need a hierarchy of PAs inside a tier 1 ISP
 - Will need to estimate control traffic
 - Calculate rate of routing changes

Evaluation Methodology

Emulation

- Build evaluation platform (ongoing...)
 - 9 server setup
 - Dual 1.4Ghz, 1+GB memory
 - Gigabit fiber, gigabit ethernet networks
 - Connected via 52 Gbps Packetengine
 - Multiple SW BGP speakers per server
 - Different BGP session delays
 - Configure arbitrary topology

Evaluation Methodology

Emulation

- Build evaluation platform (ongoing...)
 - 9 server setup
 - Dual 1.4Ghz, 1+GB memory
 - Gigabit fiber, gigabit ethernet networks
 - Connected via 52 Gbps Packetengine
 - Multiple SW BGP speakers per server
 - Different BGP session delays
 - Configure arbitrary topology
- Collect data to feed platform (ongoing...)
 - BGP collector part of Sprint's internal-BGP network
 - Connects to 130+ routers
 - Store months of routing messages
 - Can be replayed on evaluation platform

Research Issues

Goal

Reduce fail over time, finer grained traffic balancing

Research Issues

Goal

Reduce fail over time, finer grained traffic balancing

Measure side effects

■ Table growth, flapping, traffic, scalability

Goal

Reduce fail over time, finer grained traffic balancing

- Measure side effects
 - Table growth, flapping, traffic, scalability
- Deployment
 - Cooperative architecture, like BGP
 - Keep history of uncooperating PAs
 - Distribution of PAs
 - Benefits leaf ASes
 - But need PA's in core (at aggregation points)
 - · Leaf ASes are customers of core
 - · Large benefits will create pressure
 - More participants, better RMAP

Summary

Hypothesis

- Available, congestion adaptive connectivity is lacking
- An overlay control plane can achieve this
- Many interesting research issues
 - How to balance local optimization and global optimization
 - Fail over time, load balancing, traffic impact, scalable, deployment, ...
- Measureable success
 - Real BGP tables and traffic patterns
 - BGP implementations in emulation testbed