Secure Internet Indirection Infrastructure (13)

Dan Adkins UC Berkeley

January 14, 2003

Dan Adkins, UC Berkeley

Introduction

- Internet has two major limitations
 - Flexibility
 - Security
- Recent work addresses flexibility
 - Overlay networks in general
 - 13 in particular
 - Flexibility allows more diverse and powerful applications
 - More control to endhosts can actually increase robustness
- Goal: Network infrastructure that is both flexible and secure
- I3 as a proof of concept

Challenge

- 13 is more vulnerable to malicious attacks than the Internet
 - I3's flexibility is both a feature and a potential for abuse
 - Active networks had this problem
- Can I3 be as secure as the Internet without sacrificing flexibility?
 - or even more secure?
- We could encrypt everything
 - But that's overkill
 - Only addresses privacy

I3 Overview

- Efficient indirection layer on top of IP
- Rendezvous based communication abstraction (instead of point-to-point)
 - Each packet has an identifier id
 - To receive a packet with identifier id, receiver R maintains a trigger (id,R) in the overlay network

- Triggers consist of (id, dest)
 - dest can be either ID or IP address
 - Multiple triggers with same ID and trees of triggers possible

Problem statement

- Want to
 - Avoid eavesdropping
 - Avoid impersonation
 - Avoid DoS
 - * on infrastructure: loops, confluences
 - * on clients: reflection
- Without losing flexibility
 - Trees of triggers
 - Ability to choose ID's
 - * Place triggers on specific servers
 - Service composition
- With little overhead

Eavesdropping

- Eve wants to listen to Alice and Bob's traffic
- Eve inserts trigger with same ID as Bob's trigger
 - Possible as a consequence of multicast
- Undetectable to Alice or Bob
- Unavoidable if Bob's trigger is public

Impersonation

- Active version of eavesdropping
- Eve impersonates Bob to Alice
- Eve takes over Bob's public trigger when it expires
 - due to crash, DoS, network outage, etc.

Loops and confluences

- Some troublesome topologies can lead to DoS
- Loops
 - May be formed maliciously or inadvertently
 - Causes an endless stream of packets
- Confluences
 - Tree expanding out then in
 - Can be used as a packet multiplier
 - Roughly speaking, any unwanted convergence of paths

Reflection

- Eve subscribes Bob to high volume traffic
- An attacker must be able to insert a trigger on the victim's behalf

Solution: constrain triggers

- Idea: maybe arbitrary triggers aren't necessary
 - (x,y) such that x and y are independent
- Only allow trigger (x,y) if x=G(y) or y=H(x)
 - where G and H are one-way hash functions

 - Actually, x.key=G(y.key), so end-hosts have some choice
- Servers will check constraints
- Solves eavesdropping, loops, confluences (?)
- Preventive solution

Problems

- Eavesdropping
- Impersonation
- Loops
- Confluences
- Reflection

Eavesdropping

- Insert trigger (G(y),y)
 - G(y) is a public ID
 - Attacker must invert G to insert trigger
- y can be an ID or IP address
- y.key must be kept secret
 - Ok to send trigger insertion message in the clear
 - If Eve can snoop trigger insertion, Eve already has local network access
 - \ast No worse than Internet
- What if Eve inserts (x,H(x)) where x=G(y)?
 - Triggers of form (G(y),y) always take precedence

Problems

- Eavesdropping
- Impersonation
- Loops
- Confluences
- Reflection

Loops and confluences

- Triggers can be either (G(y),y) or (x,H(x))
 - (G(y),y) tree built from receiver
 - (x,H(x)) tree built from sender
- Nearly impossible to form a loop with constrained triggers
 - Requires finding hash chain that eats itself
 - As hard as inverting one-way function
- Confluences on a single ID are impossible too
 - Can only build trees from sender or receiver
 - No way to connect them without inverting G or H
- But, confluences on I3 nodes are still possible!

Server confluence

- DoS against infrastructure still possible
 - Attacker can overload I3 node by directing confluence towards *multiple* ID's on the same server
 - Not technically a confluence (no convergence point)
- Use push-back
 - I3 servers or clients under load may remove triggers
 * Weighted fair queueing helps identify which triggers to remove
 - Dead end triggers are a problem for the infrastructure in general
 - Solution: When a packet arrives that matches no trigger, send it back
 - The sender (another I3 server) should remove the trigger which caused the packet
- Push-back is a good idea in general for error detection
- Push-back is more effective if each host connects to a nearby I3 server.

Problems

- Eavesdropping
- Impersonation
- Loops
- Confluences
- Reflection

Impersonation and Reflection

- Impersonation
 - Only a problem when server goes down
 - If you really care, exchange secrets or certificates
- Reflection
 - Principle: You should only receive packets which you (implicitly) request
 - Solution: Challenges
 - * Trigger insertion pointing to an IP address must come from that address
 - * Server sends a challenge to that address

Tradeoffs

- Overhead of checking constraints
 - Trigger insertion increased from 19us to 24us
- Challenges cost an extra RTT
- True service composition breaks
 - Requires per-flow state
 - We have solution with arbitrary triggers which won't impact service of constrained triggers
 - * Constrained triggers have precedence over arbitrary triggers
 - * But, arbitrary triggers require higher overhead checks

Conclusion

- 13 can be flexible without compromising security and performance
 - with constrained triggers, not worse than today's Internet
- End-hosts can use I3's flexibility to improve resilience against various attacks